Identification of continuous-time systems

Access Full Text

Identification of continuous-time systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

System identification is a well-established field. It is concerned with the determination of particular models for systems that are intended for a certain purpose such as control. Although dynamical systems encountered in the physical world are native to the continuous-time domain, system identification has been based largely on discrete-time models for a long time in the past, ignoring certain merits of the native continuous-time models. Continuous-time-model-based system identification techniques were initiated in the middle of the last century, but were overshadowed by the overwhelming developments in discrete-time methods for some time. This was due mainly to the ‘go completely digital’ trend that was spurred by parallel developments in digital computers. The field of identification has now matured and several of the methods are now incorporated in the continuous time system identification (CONTSID) toolbox for use with Matlab. The paper presents a perspective of these techniques in a unified framework.

Inspec keywords: continuous time systems; mathematics computing; time-varying systems; identification; discrete time systems; control system analysis

Other keywords: dynamical system; continuous time system; discrete time model; system identification

Subjects: Simulation, modelling and identification; Control system analysis and synthesis methods; Discrete control systems

References

    1. 1)
      • A.E. Pearson , F.C. Lee . On the identification of polynomial input-output differential systems. IEEE Trans. Autom. Control , 8 , 778 - 782
    2. 2)
      • Yang, Z., Sagara, S., Wada, T.: `Subspace model identification for continuous-time systems', Proc. 11th IFAC Symp. Syst. Identification Parameter Estimation, 1997, Kitakyushu, Japan, p. 1671–1676.
    3. 3)
      • S.A. Billings , Z. Lang . Truncation of nonlinear system expansions in the frequency domain. Int. J. Control , 5 , 1019 - 1042
    4. 4)
    5. 5)
      • Junge, T., Unbehauen, H.: `On-line identification of nonlinear systems using structurally adaptive radial basis functions', ACC'97, Proc. 16th Am. Control Conf., 1997, Albuquerque, NM, USA, p. 1037–1041.
    6. 6)
    7. 7)
      • Rao, G.P., Garnier, H.: `Numerical illustrations of the relevance of direct continuous-time model identification', 2456, 15thTriennial IFAC World Congress, 2002, Barcelona, Spain, CD-Rom publication.
    8. 8)
      • Garnier, H., Sibille, P., Mensler, M., Richard, A.: `Pilot crane identification and control in presence of friction', Proc. 13th IFAC World Congress, 1996, San Francisco, USA, J, p. 107–112.
    9. 9)
      • Garnier, H., Mensler, M.: `The CONTSID toolbox: a matlab toolbox for continuous-time system identification', Proc. 12th IFAC-Symp. Syst. Identification Parameter Estimation, 2000, Santa Barbara, CA, USA, p. 851–856.
    10. 10)
      • Hachimo, T., Karube, I., Minari, Y., Takata, H.: `Continuous-time identification of nonlinear systems using radial basis function network model and genetic algorithm', 141, Proc. 12th IFAC Symp. Syst. Identification Parameter Estimation, 2000, Santa Barbara, CA, USA.
    11. 11)
      • Rao, G.P., Garnier, H.: `Identification of continuous-time systems: direct or indirect?', Proc. 15th Int. Conf. Systeme Science, 2004, Wroclaw, Poland, I, p. 66–86.
    12. 12)
      • S. Mukhopadhyay , A. Patra , G.P. Rao . A new class of discrete-time models for continuous-time systems. Int. J. Control , 5 , 1161 - 1187
    13. 13)
      • N.K. Sinha , G.P. Rao , N.K. Sinha , G.P. Rao . (1991) Identification of continuous systems—methodology and computer implementation.
    14. 14)
      • P.C. Young , P.H. Hammond . (1965) Process parameter estimation and self adaptive control., Theory of self adaptive control systems.
    15. 15)
      • Garnier, H., Sibille, P., Richard, A.: `Recursive least-squares estimation of continuous models via generalised Poisson moment functionals', EUSIPCO'94, Proc. VIIth European Signal Processing Conf., 1994, Edinburgh, Scotland, p. 518–521.
    16. 16)
      • D.C. Saha , G P. Rao . Identification of lumped linear time varying parameter systems via Poisson moment functionals. Int. J. Control , 4 , 709 - 721
    17. 17)
      • Pearson, A.E.: `Least squares parameter identification of nonlinear differential input-output models', Proc. 27th IEEE Conf. Decis. Control (CDC), 1988, Austin, USA, p. 1831–1835.
    18. 18)
      • P. Van Overschee , B. De Moor . (1996) Subspace identifiction for linear systems.
    19. 19)
      • C. Bohn , H. Unbehauen . The application of matrix differential calculus for derivation of simplified expressions in approximate nonlinear filter algorithms. Automatica , 1553 - 1560
    20. 20)
      • H. Unbehauen , G.P. Rao . A review of identification in continuous systems. IFAC Annu. Rev. Control , 145 - 171
    21. 21)
      • Pearson, A.E.: `Explicit parameter identification for a class of nonlinear input/output differential operator models', Proc. 31st IEEE Conf. Decis. Control (CDC), 1992, Tuscon, USA, p. 3656–3660.
    22. 22)
      • Kohr, R.H., Haberock, L.L.: `An experimental determination of differential equations to describe simple nonlinear systems', Proc. Joint Autom. Control Conf. (JACC), 1966, p. 616–623.
    23. 23)
      • G.P. Rao , A.V.B. Subrahmanyam , T. Katayama , S. Sugimoto . (1996) Models in generalized MA form for identification of continuous-time systems, Statistical methods in control and signal processing.
    24. 24)
      • R. Isermann , K.H. Lachmann , D. Matko . (1992) Adaptive control systems.
    25. 25)
      • Ljungquist, D., Balchen, J.: `Recursive prediction error methods for online estimation in nonlinear state-space models', CDC'93, Proc. 32nd IEEE Conf. Decision and Control, 1993, San Antonio, USA, p. 714–719.
    26. 26)
      • Sagara, S., Zhao, Z.Y.: `Filtering approaches to identification of continuous systems', Proc. 9th IFAC/IFORS Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, p. 305–310.
    27. 27)
      • H. Garnier , M. Mensler , A. Richard . Continuous-time model identification from sampled data. Implementation issues and performance evaluation. Int. J. Control , 13 , 1337 - 1357
    28. 28)
      • L. Ljung . (1999) System identification: theory for the user.
    29. 29)
    30. 30)
      • K.N. Read , W.H. Ray . Application of nonlinear dynamic analysis in the identification and control of nonlinear systems—I. Simple dynamics. J. Process Control , 1 , 1 - 15
    31. 31)
      • Z.J. Yang , S. Sagara , K. Wada . Identification of continuous-time systems from sampled input-output data using bias eliminating techniques. Control Theory Adv. Tech. , 1 , 53 - 75
    32. 32)
      • S. Mukhopadhyay , A. Patra , G.P. Rao . Irreducible model estimation for MIMO systems. Int. J. Control , 1 , 223 - 253
    33. 33)
      • Z.Y. Zhao , S. Sagara , M. Tomizuka . A new bias compensating LS method for continuous system identification in the presence of coloured noise. Int. J. Control , 6 , 1441 - 1452
    34. 34)
    35. 35)
      • A. Patra , G.P. Rao . (1996) General hybrid orthogonal functions and their applications in systems and control, LNCIS.
    36. 36)
      • M. Verhaegen . Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica , 1 , 61 - 74
    37. 37)
      • Daniel-Berhe, S., Unbehauen, H.: `Physical parameter estimation of the nonlinear dynamics of a single link robotic manipulator with flexible joint using the HMF-method', Proc. of 16th Am. Contr. Conf. (ACC), 1997, Albuquerque, NM, USA, p. 1504–1508.
    38. 38)
      • Ljung, L.: `Initialisation aspects for subspace and output-error identification methods', Proc. European Control Conf., 2003, Cambridge, CD-Rom publication.
    39. 39)
      • Garnier, H., Sibille, P., Bastogne, T.: `A bias-free least-squares parameter estimator for continuous-time state-space models', CDC'97, Proc. 36th IEEE Conf. Decis. Control, 1997, San Diego, USA, p. 1860–1865.
    40. 40)
      • S.-Y. Wang . On the orthogonal functions approximation method of non-linear system identification and its application in biochemical processes. Control Theory Adv. Technol. , 1 , 39 - 52
    41. 41)
      • F.W. Fairman , D.W.C. Shen . Parameter identification for linear time-varying dynamic processes. Proc. Inst. Electr. Eng. , 2025 - 2029
    42. 42)
      • M. Pottmann , H. Unbehauen , D. Seborg . Application of a general multi-model approach for identification of highly nonlinear processes—a case study. Int. J. Control , 97 - 120
    43. 43)
      • P.C. Young . The determination of the parameters of a dynamic process. Radio Electron. Eng. J. IERE , 345 - 361
    44. 44)
      • G.P. Rao , D.C. Saha , T.M. Rao , A. Bhaya , K. Aghoramurthy . A microprocessor based system for on line parameter identification in continuous dynamical systems. IEEE Trans. Ind. Electron. , 3 , 197 - 201
    45. 45)
      • F.W. Fairman . Parameter identification for a class of multivariable nonlinear processes. Int. J. Syst. Sci. , 3 , 291 - 296
    46. 46)
      • K.B. Datta , B.M. Mohan . (1994) Orthogonal functions in systems and control.
    47. 47)
      • Young, P.C., Garnier, H., Javis, A.: `Identification of continuous-time linear and nonlinear models: A tutorial with environmental applications', Proc. 13th IFAC Symp. Syst. Identification, 2003, Rotterdam, p. 618–628.
    48. 48)
      • Diekmann, K., Unbehauen, H.: `Recursive identification of multiple-input multiple-output systems', Proc. of 5th IFAC Symp. Identification Syst. Parameter Estimation, 1979, Darmstadt, Germany, p. 423–429.
    49. 49)
      • C. Bohn , H. Unbehauen . Sensitivity models for nonlinear filters with application to recursive parameter estimation for nonlinear state-space models. IEE Proc., Control Theory Appl. , 2 , 137 - 145
    50. 50)
      • W.A. Wolovich . (1974) Linear multivariable systems.
    51. 51)
    52. 52)
      • P.C. Young . Applying parameter estimation to dynamic systems: Part 2. Control Eng. , 11 , 118 - 124
    53. 53)
      • L. Ljung , T. Söderström . (1983) Theory and practice of recusive identification.
    54. 54)
      • S. Sagara , Z.J. Yang , K. Wada . Recursive identification algorithms for continuous systems using an adaptive procedure. Int. J. Control , 2 , 391 - 409
    55. 55)
      • D.C. Saha , B.B.P. Rao , G.P. Rao . Structure and parameter identification in linear continuous lumped systems—the Poisson moment functional approach. Int. J. Control , 3 , 477 - 491
    56. 56)
      • H. Ubenhauen , G.P. Rao . (1987) Identification of continuous systems.
    57. 57)
      • W. Greblicki . Continuous-time Wiener system identification. IEEE Trans. Autom. Control , 10 , 1488 - 1492
    58. 58)
      • L.A. Zadeh . From circuit theory to system theory. Proc. Inst. Radio Eng. , 856 - 865
    59. 59)
      • J. Schoukens , R. Pintelon , H. Van Hamme . Identification of linear dynamic systems using piecewise constant excitations: use, misuse and alternatives. Automatica , 7 , 1153 - 1169
    60. 60)
      • Dhawan, R.K., Sahai, A., Nishar, D.V., Rao, G.P.: `Recursive estimation of Markov parameters in linear continuous-time SISO systems via block-pulse functions', Proc. of 9th IFAC Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, p. 1495–1500.
    61. 61)
      • J.E. Diamessis . On the determination of the parameters of certain nonlinear systems. Proc. IEEE , 319 - 320
    62. 62)
      • H. Unbehauen , N. Sinha , G.P. Rao . (1991) Adaptive model approaches, Identification of continuous-time systems.
    63. 63)
      • K.M. Tsang , S.A. Billings . Identification of continuous time nonlinear systems using delayed state variable filters. Int. J. Control , 2 , 159 - 180
    64. 64)
      • S. Daniel-Berhe . (1999) Parameter identification of nonlinear continuous-time systems using the Hartley modulating functions method.
    65. 65)
      • Larimore, W.: `Canonical variate analysis identification, filtering and adaptive control', Proc. 29th IEEE-Conf. Decis. Control (CDC), 1990, Hawaii, p. 596–604.
    66. 66)
      • Sagara, S., Yang, Z.J., Wada, K.: `Identification of continuous systems from noisy sampled input-output data', Proc. 9th IFAC/IFORS Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, p. 603–608.
    67. 67)
      • P.C. Young , A. Chotai , W. Tych , N.K. Sinha , G.P. Rao . (1991) Identification, estimation and control of continuous-time systems described by delta operator models, Identification of continuous-time systems.
    68. 68)
      • Skantze, F.P., Pearson, A.E., Klein, V.: `Parameter identification for unsteady aerodynamic systems by the modulating function technique', SYSID'94, Proc. 10th IFAC Symp. Syst. Identification, 1994, Copenhagen, Denmark, p. 571–576.
    69. 69)
    70. 70)
      • Guillaume, P., Pintelon, R., Schoukens, J.: `Robust parametric transfer function estimation using complex logarithmic frequency response data', Proc. 10th IFAC Symp. Syst. Identification, 1994, Copenhagen, Denmark, 2, p. 495–502.
    71. 71)
      • Ljung, L.: `Some results on identifying linear systems using frequency domain data', Proc. 32rd IEEE Conf. on Decis. Control (CDC), 1993, San Antonio, TX, USA, p. 3534–3538.
    72. 72)
      • Haverkamp, B., Verhaegen, M., Chou, C.T., Johansson, R.: `Identification of continuous-time MIMO state space models from sampled data in the presence of process and measurement noise', Proc. 35th IEEE Conf. Decis. Control (CDC), 1966, Kobe, Japan, p. 1539–1544.
    73. 73)
      • P.C. Young . Comments on “On the estimation of continuous-time transfer functions”. Int. J. Control , 693 - 697
    74. 74)
      • R. Pintelon , P. Guillaume , Y. Rolain , J. Schoukens , H. Van Hamme . Parametric identification of transfer functions in the frequency domain—a survey. IEEE Trans. Autom. Control , 11 , 2245 - 2260
    75. 75)
      • Evans, C., Weiss, M., Escobet, T., Quevedo, J., Rees, D., Jones, L.: `Identification in the time and frequency domains: a comparison using the ECC bench-mark model', Proc. UKACC Int. Conf. Control, University of Exeter, 1966, UK, p. 1290–1296.
    76. 76)
      • G.P. Rao . (1983) Piecewise constant orthogonal functions and their application to systems and control, LNCIS.
    77. 77)
      • Goodwin, G.C., Ninness, B., Poor, V.: `Choice of basis functions for continuous and discrete system modelling', Proc. of 9th IFAC Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, p. 1179–1184.
    78. 78)
      • Rufer, D.F.: `Implementation and properties of a method for identification of nonlinear continuous-time models', 77-01, 1977.
    79. 79)
      • I. Kollár . (1994) Frequency domain system identification toolbox.
    80. 80)
      • S.A. Billings . Identification of nonlinear systems—a survey. IEE Proc. D, Control Theory Appl. , 6 , 272 - 285
    81. 81)
      • P.M. Lion . Rapid identification of linear and nonlinear systems. AIAA J. , 10 , 1835 - 1842
    82. 82)
      • R. Haber , L. Keviczky . (1999) Nonlinear system identification-input-output modelling approach. Vol. 1 & 2.
    83. 83)
      • , N.N.: `Identification of nonlinear systems toolbox for use with MATLAB', , Franzstr. 107.
    84. 84)
      • D.C. Saha , G.P. Rao . Transfer function matrix identification in MIMO systems via Poisson moment functionals. Int. J. Control , 4 , 727 - 738
    85. 85)
      • Jedner, U., Unbehauen, H.: `Identification of a class of nonlinear systems by parameter estimation of a linear multi-model', Proc. IMACS Symp. Model. Simul. Control Lumbed Distrib. Parameter Syst., 1986, Villeneuve, France, p. 297–299.
    86. 86)
    87. 87)
    88. 88)
      • P.C. Young , A.L. Jakeman . Refined instrumental variable methods of recursive time-series analysis: Part III, Extensions. Int. J. Control , 741 - 764
    89. 89)
      • J. Schoukens , R. Pintelon . (1991) Identification of linear systems: a practical guideline to accurate modeling.
    90. 90)
      • R. Fletcher . (1987) Practical methods of optimization.
    91. 91)
      • De Moor, B., Vandevalle, J., Vanderberghe, L., Van Mieghem, P.: `A geometrical strategy for identification of state space models of linear multivariable systems with singular value decomposition', Proc. IFAC-Symp. Identification Syst. Parameter Estimation, 1988, Beijing, China, p. 700–704.
    92. 92)
      • Garnier, H., Mensler, M.: `CONTSID – A continuous-time system identification toolbox for MATLAB', F-1013-6, Proc. European Control Conf. (ECC-99), 1999, Karlsruhe, Germany.
    93. 93)
      • Li, L.M., Billings, S.A.: `Continuous-time linear and nonlinear system identification in the frequency domain', 711, Research, 1998.
    94. 94)
      • J. Balchen . How have we arrived at the present state of knowledge in process control? Is there a lesson to be learned?. J. Process Control , 101 - 108
    95. 95)
      • Wahlberg, B.: `Laguerre and Kautz models', SYSID'94, Proc. 10th IFAC Symp. Identification Syst. Parameter Estimation, 1994, Copenhagen, Denmark, 3, p. 1–12.
    96. 96)
      • S. Sagara , Z.Y. Zhao . Recursive identification of transfer function matrix in continuous systems via linear integral filter. Int. J. Control , 2 , 457 - 477
    97. 97)
      • R. Johansson . Identification of continuous-time models. IEEE Trans. Signal Process. , 4 , 887 - 897
    98. 98)
      • H. Unbehauen , G.P. Rao . Identification of continuous systems—a survey. Syst. Anal. Model. Simul. , 99 - 155
    99. 99)
      • B. Anderson . Identification of scalar errors-in-variables models with dynamics. Automatica , 6 , 709 - 716
    100. 100)
    101. 101)
      • D.C. Saha , G.P. Rao . (1983) Identification of continuous dynamical systems—the Poisson moment functional (PMF) approach, LNCIS.
    102. 102)
      • Ohsumi, A., Kameyama, K., Yamaguchi, K.: `Subspace-based identification for continuous-time stochastic systems via distribution-theoretic approach', Proc. 14th IFAC World Congress, 1999, Beijing, China, p. 223–228.
    103. 103)
      • Hunter, I.W., Nielson, P.M.: `Nonlinear and time-varying identification of living muscle cell mechanics', Proc. 11th IFAC World Congress, 1990, Tallin, USSR, p. 104–107.
    104. 104)
      • N. Wiener . (1958) Nonlinear problems in random theory.
    105. 105)
      • C.F. Chen , C.H. Hsiao . Time domain synthesis via Walsh functions. Inst. Electr. Eng. Proc. , 5 , 565 - 570
    106. 106)
      • M. Verhaegen . Subspace model identification, pt. 3: Analysis of the ordinary output-error state space model identification algorithm. Intern. J. Control , 555 - 586
    107. 107)
      • P.C. Young . Parameter estimation of continuous-time models. Automatica , 1 , 23 - 39
    108. 108)
      • H. Unbehauen . (2000) Regelungstechnik II.
    109. 109)
      • Zhao, Z.Y., Sagara, S., Kumamaru, K.: `On-line identification of time delay and system parameters of continuous systems based on discrete-time measurements', Proc. 9th IFAC/IFORS Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, p. 721–726.
    110. 110)
      • Johansson, R., Verhaegen, M., Haverkamp, B., Chou, C.T.: `Correlation methods of continuous-time state-space model identification', F 1013-2., Proc. Europ. Control Conf. (ECC), 1999, Karlsruhe, Germany.
    111. 111)
      • D.C. Saha , G.P. Rao . Identification of lumped linear systems in the presence of initial conditions via Poisson moment functionals. Int. J. Control , 4 , 637 - 644
    112. 112)
      • L. Ljung . (1992) System identification toolbox.
    113. 113)
      • Haverkamp, R.: `State space identification', 2001, PhD, Technical University of Delft, The Netherlands.
    114. 114)
      • S. Sagara , Z.J. Yang , K. Wada . Identification of continuous systems using digital low-pass filtering. Int. J. Sys. Sci. , 7 , 1159 - 1179
    115. 115)
      • H. Unbehauen . (2000) Regelungstechnik III.
    116. 116)
    117. 117)
      • G.P. Rao , L. Sivakumar . Parameter identification in lumped linear continuous systems in a noisy environment via Kalman filtered Poisson moment functionals. Int. J. Control , 3 , 509 - 519
    118. 118)
    119. 119)
      • S. Wang . Block pulse operator method for parameter identification problems in non-linear continuous systems. Int. J. Syst. Sci. , 12 , 2441 - 2455
    120. 120)
      • P.C. Young . In flight dynamic checkout—a discussion. IEEE Trans. Aerospace Electron. Syst. , 1106 - 1111
    121. 121)
      • S. Daniel-Berhe , H. Unbehauen . Bilinear continuous-time systems identification via Hartley-based modulating functions. Automatica , 4 , 499 - 503
    122. 122)
      • Mensler, M., Garnier, H., Richard, A., Sibille, P.: `Comparison of sixteen continuous-time system identification methods with the CONTSID toolbox', F-1013-7., Proc. European Control Conf. (ECC-99), 1999, Karlsruhe, Germany.
    123. 123)
    124. 124)
      • A.V.B. Subrahmanyam , D.C. Saha , G.P. Rao . Identification of continuous-time MIMO systems via time moments. Control Theory Adv. Technol. , 4 , 1359 - 1378
    125. 125)
      • Pazdera, J.S., Pottinger, H.J.: `Linear system identification via Liapunov design techniques', Proc. Joint Automatic Control Conf., 1969, Boulder, p. 795–801.
    126. 126)
      • Z.H. Jiang , W. Schaufelberger . (1992) Block pulse functions and their application in control systems.
    127. 127)
      • Sagara, S., Zhao, Z.Y.: `Numerical integration approach to on-line identification of continuous-time systems in the presence of measurement noise', Proc. 8th IFAC/IFORS Symp. Identification Syst. Parameter Estimation, 1988, Beijing, PR China, p. 441–446.
    128. 128)
      • K.J. Aström , P. Eykhoff . System identification—a survey. Automatica , 2 , 123 - 162
    129. 129)
      • Garnier, H., Sibille, P., Nguyen, H.L., Spott, T.: `A bias-compensating least-squares method for continuous-time system identification via Poisson moment functionals', SYSID'94, Proc. 10th IFAC Symp. Syst. Identification, 1994, Copenhagen, Denmark, p. 3675–3680.
    130. 130)
      • Verhaegen, M.: `A novel non-iterative MIMO state space model identification technique', Proc. 9th IFAC/IFORS Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, p. 1453–1458.
    131. 131)
      • J. Kurth . (1995) Identifikation nichtlinearer Systeme mit komprimierten Volterra-Reihen.
    132. 132)
      • P. Kortmann. , H. Unbehauen , B. Reusch . (1997) Structure identification of functional-type fuzzy models with application to modelling nonlinear dynamic plants, Computational intelligence.
    133. 133)
      • F.R. Gantmacher . (1959) Applications of the theory of matrices.
    134. 134)
      • Garnier, H., Sibille, P., Nguyen, H.L.: `A new bias-compensating least-squares method for continuous-time MIMO system identification applied to a laboratory-scale process', CCA'94, Proc. 3rd IEEE Conf. Control Appl., 1994, Glasgow, Scotland, p. 1711–1716.
    135. 135)
      • Daniel-Berhe, S., Unbehauen, H.: `Identification of nonlinear continuous-time Hammerstein model via HMF-method', Proc. of 36th IEEE Conf. Decis. Control (CDC), 1997, San Diego, CA, USA, p. 2990–2995.
    136. 136)
    137. 137)
      • Pearson, A.E., Shen, Y., Klein, V.: `Application of Fourier modulating functions to parameter estimation of a multivariable linear differential system', SYSID'94, Proc. 10th IFAC Symp. Syst. Identification, 1994, Copenhagen, Denmark, p. 49–54.
    138. 138)
      • Haverkamp, B., Verhaegen, M., Chou, C.T., Johansson, R.: `Continuous-time subspace model identification method using Laguerre filters', Proc. 11th IFAC Symp. Identification, 1997, Kitakyushu, Japan, p. 1143–1148.
    139. 139)
      • J.E. Diamessis . A new method of determining the parameters of certain time-varying systems. Proc. IEEE , 396 - 397
    140. 140)
      • R.E. Kalman . (1970) Aspects of network and systems theory.
    141. 141)
      • Y.Z. Hu , E.J. Davison . A PMGOP method of parameter identification for a class of continuous nonlinear systems. Int. J. Control , 2 , 345 - 378
    142. 142)
      • A.B. Clymer . Direct system synthesis by means of computers. Trans. Amer. Inst. Electr. Eng. , 798 - 806
    143. 143)
      • Daniel-Berhe, S., Unbehauen, H.: `State space identification of bilinear continuous-time canonical systems via batch scheme Hartley modulating functions approach', Proc. 37th Int. Conf. Decis. Control (CDC), 1998, Tampa, FL, USA, p. 4482–4487.
    144. 144)
      • Rao, G.P., Unbehauen, H., Mukhopadhyay, S., Patra, A.: `From calculus to algebra in models of continuous-time systems', Proc. 9th IFAC/IFORS Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, 2, p. 1340–1346.
    145. 145)
      • S. Daniel-Berhe , H. Unbehauen . Physical parameters estimation of the nonlinear continuous-time dynamics of a DC motor using HMF-method. J. Franklin Inst. , 481 - 501
    146. 146)
      • Rucker, R.A.: `Real-time system identification in the presence of noice', 2.9, Pepr. IEEE Western Electronics Convention, 1963.
    147. 147)
      • Bapat, V.N.: `Some extensions to Poisson moment functional based estimation of continuous-time models of dynamical systems', 1993, PhD, Indian Institute of Technology, Kharagpur.
    148. 148)
      • Chakravarty, B., Mandyam, N., Mukhopadhyay, S., Patra, A., Rao, G.P.: `Real-time parameter estimation via block pulse functions', Proc. SICE'89, 1989, Matsuyama, Japan, p. 1095–1098.
    149. 149)
      • Daniel-Berhe, S., Unbehauen, H.: `Batch scheme recursive Hartley modulating functions identification of nonlinear continuous-time Hammerstein model', 1013-3, Proc. European Control Conf. (ECC-99), 1999, Karlsruhe, Germany.
    150. 150)
      • P. Van Overschee , B. De Moor . N4SID: Subspace algorithms for the identification of combined deterministic stochastic systems. Automatica , 1 , 75 - 93
    151. 151)
      • R.H. Kohr . A method for determination of a differential equation model for simple nonlinear systems. IEEE Trans. Electron. Comput. , 394 - 400
    152. 152)
      • Homssi, L., Titli, A., Despujols, A.: `Continuous-time process identification: comparison of eight methods and practical aspects', Proc. 9th IFAC-Symp. Syst. Identification Parameter Estimation, 1991, Budapest, Hungary, 2, p. 1634–1642.
    153. 153)
      • G.P. Rao , L. Sivakumar . System identification via Walsh functions. Inst. Electr. Eng. Proc. , 10 , 1160 - 1161
    154. 154)
      • A. Whitfield . Transfer function synthesis using frequency response data. Int. J. Contr. , 5 , 1413 - 1425
    155. 155)
      • P.C. Young , P. McKenna , J. Bruun . Identification of non-linear stochastic systems by state dependent parameter estimation. Int. J. Control , 1837 - 1857
    156. 156)
      • Garnier, H., Sibille, P., Spott, T.: `Influence of the initial covariance matrix on recursive LS estimation of continuous models via generalised Poisson moment functionals', SYSID'94, Proc. 10th IFAC Symp. Syst. Identification, 1994, Copenhagen, Denmark, p. 3669–3674.
    157. 157)
      • R.H. Middleton , G.C. Goodwin . (1990) Digital control and estimation: a unified approach.
    158. 158)
      • G.P. Rao , T. Srinivasan . Remarks on “Authors reply” to “Comments on the design of piecewise constant gains for optimal control”. IEEE Trans. Autom. Control , 4 , 762 - 763
    159. 159)
      • D.C. Saha , G.P. Rao . Identification of lumped linear systems in the presence of small unknown time delays—the Poisson moment functional approach. Int. J. Control , 5 , 945 - 951
    160. 160)
      • A. Patra , H. Unbehauen . Identification of a class of nonlinear continuous-time systems using Hartley modulating functions. Int. J. Control , 6 , 1431 - 1451
    161. 161)
      • A.E. Pearson , F.C. Lee . Parameter identification of linear differential systems via Fourier based modulating functions. Control-Theory Adv. Technol. (C-TAT) , 239 - 266
    162. 162)
      • Dhawan, R.K., Sahai, A., Nishar, D.V., Rao, G.P.: `Recursive estimation of Markov parameters in linear continuous-time SISO systems via block pulse functions', Proc. 9th IFAC/IFORS Symp. Identification Syst. Parameter Estimation, 1991, Budapest, Hungary, 2, p. 1495–1500.
    163. 163)
      • H. Unbehauen . Some new trends in identification and modelling of nonlinear dynamical systems. J. Appl. Math. Comput. , 279 - 297
    164. 164)
      • M. Moonen , B. De Moor , J. Vandevalle , N. Sinha , G.P. Rao . (1991) SVD-based subspace methods for multivariable continuous-time system identification, Identification of continuous-time systems.
    165. 165)
      • Pearson, A.E., Shen, Y., Pan, J.Q.: `Discrete frequency formats for linear differntial system identification', Proc. 12th IFAC World Congress, 1993, Sydney, Australia, VII, p. 143–148.
    166. 166)
      • Garnier, H., Sibille, P., Richard, A.: `Continuous-time canonical state-space model identification via Poisson moment functionals', CDC'95, Proc. 34th IEEE Conf. Decision Control, 1995, New Orleans, USA, p. 3004–3009.
    167. 167)
      • J.E. Diamessis . A new method of determining the parameters of physical systems. Proc. IEEE , 205 - 206
    168. 168)
      • Garnier, H., Mensler, M.: `Comparison of sixteen continuous-time system identification methods with the CONTSID toolbox', dm 3-6, Proc. European Control Conf. ECC'99, 1999, Karlsruhe, Germany.
    169. 169)
      • J. Dastych , P. Kueper . Identifikation zeitkontinuierlicher Systeme mit Block-Puls-Funktionen und bilinearen Transformationen. Automatisierungstechnik , 1 , 24 - 30
    170. 170)
      • M.S. Corrington . Solution of differential and integral equations with Walsh functions. IEEE Trans. Circuit Theory , 5 , 470 - 476
    171. 171)
      • Daniel-Berhe, S., Unbehauen, H.: `Parameter estimation of nonlinear continuous-time systems using Hartley modulating functions', Proc. IEE UKACC Int. Conf. Control, 1996, Exeter, UK, p. 228–233.
    172. 172)
      • Coirault, P., Trigeassou, J.C., Gaubert, J.P., Champenois, Q.: `Parameter identification of an induction machine for diagnosis', Proc. IFAC-Safe Process '97, 1997, Kingston upon Hull, UK, p. 276–281.
    173. 173)
      • M. Shinbrot . On the analysis of linear and nonlinear systems. Trans. ASME , 547 - 552
    174. 174)
      • Schaufelberger, W.: `Modelladaptive systeme', 1969, Dr.-Ing., ETH, Zürich, Switzerland.
    175. 175)
      • T.C. Hsia . (1977) System identification.
    176. 176)
      • J. Schoukens , R. Pintelon , G. Vandersteen , P. Guillaume . Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets. Automatica , 6 , 1073 - 1086
    177. 177)
      • Z.J. Yang , S. Sagara , K. Wada . Parameter identification based on the Steiglitz-McBride method from noisy input-output data. Trans. Soc. Instrum. Control Eng. , 12 , 1492 - 1494
    178. 178)
      • A.V.B. Subrahmanyam , G.P. Rao . Identification of continuous-time SISO systems via Markov parameter estimation. IEE Proc. D, Control Theory Appl. , 1 , 1 - 10
    179. 179)
      • Unbehauen, H., Rao, G.P.: `Identification of continuous-time systems—a tutorial', (SYSID'97), Proc. 11th IFAC Symposium on Identification, July 1997, Fukuoka, Japan, p. 1023–1049.
    180. 180)
      • Inoue, K., Kumamaru, K., Nakahashi, Y., Nakamura, N., Uchida, M.: `A quick identificatiuon method of continuous-time nonlinear systems and its application to power plant control', SYSID'94, Proc. 10th IFAC Symp. Syst. Identification Parameter Estimation, 1994, Copenhagen, Denmark, p. 319–324.
    181. 181)
      • A.K. Mukherjee , D.C. Saha , G.P. Rao . Identification of large scale distributed parameter systems—some simplifications in the multidimensional Poisson moment functional approach. Int. J. Sys. Sci. , 7 , 777 - 788
    182. 182)
      • Rao, G.P., Diekmann, K., Unbehauen, H.: `Parameter estimation in large-scale interconnected systems', Proc. of 9th IFAC World Congress, 1984, Budapest, Hungary, X, p. 118–122.
    183. 183)
      • Bastogne, T., Garnier, H., Sibille, P., Mensler, M.: `Applicability of Poisson moment functionals to subspace methods for continuous-time system identification', SYSID'97, Proc. 11th IFAC Symp. Syst. Identification, 1997, Fukuoka, Japan, 4, p. 1665–1670.
    184. 184)
      • Rolain, Y., Pintelon, R., Xu, K.Q., Vold, H.: `On the use of orthogonal polynomials in high order frequency domain system identification and its application to model parameter estimation', Proc. 33rd IEEE Conf. on Decis. Control (CDC), 1994, Lake Buena Vista, FL, USA, p. 3365–3373.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20045250
Loading

Related content

content/journals/10.1049/ip-cta_20045250
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading