http://iet.metastore.ingenta.com
1887

Optimal dual-rate digital redesign with closed-loop order reduction

Optimal dual-rate digital redesign with closed-loop order reduction

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An optimal dual-rate digital redesign method is proposed that can be applied to continuous-time and fast-rate discrete-time control systems. The paper presents a technique, which relies on the solution of a dual-rate H2 discrete-time control problem, to convert such systems to either a slow-rate or a dual-rate sampled-data control system while guaranteeing closed-loop stability and performance in the discrete-time H2 sense. The proposed technique results in sampled-data control systems providing satisfactory closed-loop performances over an extended range of sampling rates, as compared with other widely used methods of digital redesign. Furthermore, the proposed digital redesign technique is useful in practice since it allows the designer to constrain the complexity of the digital controllers, thus resulting in low-order digital controllers easily implementable in software code and free of causality and real-time problems. Numerical examples provide a comparison of the proposed digital redesign technique with well-known approaches.

References

    1. 1)
      • K.J. Astrom , B. Wittenmark . (1997) Computer-controlled systems: theory and design.
    2. 2)
      • Hara, S., Yamamoto, Y., Fujioka, H.: `Modern and classical analysis/synthesis methods in sampled-data control — a brief overview with numerical examples', Proc. 35th Conf. Decision and Control, 1996, Kobe, Japan, p. 1251–1256.
    3. 3)
      • T. Chen , B. Francis . (1995) Optimal sampled-data control systems.
    4. 4)
    5. 5)
    6. 6)
      • Azad, A.M., Hesketh, T.: `H', Proc. Am. Control Conf., 2002, Anchorage, Alaska, p. 459–464.
    7. 7)
      • Farret, D., Duc, G., Harcaut, J.P.: `Multirate LPV synthesis: a loop-sharing approach for missile control', Proc. Am. Control Conf., 2002, Anchorage, Alaska, p. 4092–4097.
    8. 8)
      • Ding, J., Numasato, H., Tomizuka, M.: `Single/dual-rate digital controller design for dual stage track following in hard disk drives', Proc. AMC2000, 2000, Nagoya, Japan, p. 80–85.
    9. 9)
    10. 10)
      • Araki, M.: `Recent developments in digital control theory', Proc. IFAC World Congress, 1993, 9, Sydney, Australia, p. 251–260.
    11. 11)
      • Yamamoto, Y.: `New approach to sampled-data control systems — a function space method', Proc. 29th Conf. Decision and Control, 1990, Honolulu, Hawaii, p. 1882–1887.
    12. 12)
    13. 13)
    14. 14)
      • Rafee, N., Chen, T., Malik, O. P.: `Multirate discretization of analog controllers', Proc. Canadian Conf. on Electrical and Computer Engineering, 1996, p. 554–557.
    15. 15)
      • H. Fujimoto , A. Kawamura , M. Tomizuka . Generalized digital redesign method for linear feedback system based on N-delay control. IEEE/ASME Trans. Mechatronics , 2 , 101 - 109
    16. 16)
      • Y.-S. Chen , J.S.-H. Tsai , L.-S. Shieh , F.-C. Kung . New conditioning dual-rate digital-redesign scheme for continuous-time systems with saturating actuators. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. , 12 , 1860 - 1870
    17. 17)
    18. 18)
      • L.S. Shieh , X.M. Zhao , J.W. Sunkel . Hybrid state-space self-tuning control using dual-rate sampling. IEE Proc. D, Control Theory Appl. , 1 , 50 - 58
    19. 19)
      • Comeau, A.R.: `Higher order discrete-time models with applications to multi-rate control', 1997, PhD, McGill University.
    20. 20)
      • Markazi, A.H.D., Hori, N.: `A new method with guaranteed stability for discretization of continuous-time control systems', Proc. Am. Control Conf., 1992, 2, Chicago, USA, p. 1397–1402.
    21. 21)
    22. 22)
      • Tornero, J., Tomizuka, M.: `Dual-rate high order hold equivalent controllers', Proc. Am. Control Conf., 2000, Chicago, Illinois, p. 175–179.
    23. 23)
      • Rabbath, C.A., Lechevin, N., Hori, N.: `Practical techniques for optimal dual-rate digital redesign', Proc. Am. Control Conf., 2004, Boston, MA, p. 3496–3501.
    24. 24)
      • Middleton, R., Xie, J.: `Non-pathological sampling for high order generalised sampled-data hold functions', Proc. Am. Control Conf., 1993, Seattle, USA, p. 1498–1502.
    25. 25)
      • R.H. Middleton , G.C. Goodwin . (1990) Digital control and estimation – a unified approach.
    26. 26)
    27. 27)
      • R.F. Whitebeck , L.G. Hofmann . Digital control law synthesis in the w' Domain. J. Guid. Control , 5 , 319 - 326
    28. 28)
    29. 29)
    30. 30)
      • J.H. Blakelock . (1991) Automatic control of aircraft and missiles.
    31. 31)
      • C.A. Rabbath , N. Aouf , N. Hori , M. Lauzon . Combined H-infinity model-matching control and dual-rate digital redesign for missile acceleration autopilots. Trans. Can. Soc. Mech. Eng. , 1 , 73 - 87
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20045141
Loading

Related content

content/journals/10.1049/ip-cta_20045141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address