http://iet.metastore.ingenta.com
1887

Computing finitely reachable containable region for switching systems

Computing finitely reachable containable region for switching systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper the practical stability issue of a switching system is discussed in terms of solving a containability problem and an attraction problem. A novel computational procedure based on nonlinear programming is presented to compute a containable region, in which each trajectory from inside cannot move out under a given single-step-lookahead control policy. How to decide whether the obtained containable region is finitely reachable from a point outside the region is then examined. The proposed approach is demonstrated on a two-tank system.

References

    1. 1)
      • M. Branicky . Multiple lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control , 4 , 475 - 482
    2. 2)
      • R. Alur , C. Courcoubetis , N. Halbwachs , T.A. Henzinger , P.-H. Ho , X. Nicollin , A. Olivero , J. Sifakis , S. Yovine . The algorithmic analysis of hybrid systems. Theor. Comput. Sci. , 1 , 3 - 34
    3. 3)
      • P. Antsaklis , X. Koutsoukos , J. Zaytoon . On hybrid control of complex systems: a survey. Eur. J. Autom. , 1023 - 1045
    4. 4)
      • M. Morari , J. Lee . Model predictive control: Past, present and future. Comput. Chem. Eng. , 667 - 682
    5. 5)
      • S. Qin , T. Badgewell . An overview of industrial model predictive control technology. Chem. Proc. Control , 316 , 232 - 256
    6. 6)
      • Slupphaug, O., Foss, B.A.: `Model predictive control for a class of hybrid systems', Proc. European Control Conf., 1997, Brussels, Belgium.
    7. 7)
      • Kerrigan, E., Bemporad, A., Mignone, D., Morari, M., Maciejowski, J.: `Multiobjective prioritisation and reconfiguration for the control of constrained hybrid systems', Proc. 2000 American Control Conf., 2000.
    8. 8)
      • S.L. Chung , S. Lafortune , F. Lin . Limited lookahead policies in supervisory control of discrete event systems. IEEE Trans. Autom. Control , 12 , 1921 - 1935
    9. 9)
      • W. Wong , R. Brockett . Systems with finite communication bandwidth constrains-ii: Stabilization with limited information feedback. IEEE Trans. Autom. Control , 5 , 1049 - 1053
    10. 10)
      • V. Laskhmikanthan , S. Leela , A.A. Martynyuk . (1990) Practical stability of nonlinear systems.
    11. 11)
      • D. Bersekas , I. Rhodes . On the minimax reachability of target sets and target tubes. Automatica , 2 , 233 - 247
    12. 12)
      • D. Bersekas . Infinite time reachability of state-space regions by using feedback control. IEEE Trans. Autom. Control , 5 , 604 - 613
    13. 13)
      • F. Blanchini . Set invariance in control. Automatica , 11 , 1747 - 1767
    14. 14)
      • Kerrigan, E., Maciejowski, J.: `Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control', Proc. 39th IEEE Conf. on Decision and Control (CDC), December 2000, Sydney, Australia.
    15. 15)
      • V.I. Zubov . (1964) Methods of A.M. Lyapunov and their Application.
    16. 16)
      • Paice, A.D.B., Wirth, F.: `Robustness analysis of domains of attraction of nonlinear systems', Proc. Mathematical Theory of Networks and Systems, 1998, p. 353–356.
    17. 17)
      • Falcone, M., Grune, L., Wirth, F.: `A maximum time approach to the computation of robust domains of attraction', Proc. Int. Conf. on Differential Equations, 1999, p. 844–849.
    18. 18)
      • C. Tomlin , J. Lygeros , S. Sastry . A game theoretic approach to controller design for hybrid systems. Proc. IEEE , 949 - 970
    19. 19)
      • Kerrigan, E., Lygeros, J., Maciejowski, J.: `A geometric approach to reachability computations for constrained discrete-time systems', Proc. 15th IFAC World Congress on Automatic Control, July 2002, Barcelona, Spain.
    20. 20)
      • D.P. Bertsekas . (1999) Nonlinear programming.
    21. 21)
      • P.P. Varaiya . (1972) Notes on optimization.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20045123
Loading

Related content

content/journals/10.1049/ip-cta_20045123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address