http://iet.metastore.ingenta.com
1887

Simultaneous static output-feedback stabilisation for discrete-time interval systems with time delay

Simultaneous static output-feedback stabilisation for discrete-time interval systems with time delay

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The simultaneous static output-feedback stabilisation problem for a collection of discrete-time interval systems with time delays both in states and in control input is considered. A sufficient condition for the existence of static output-feedback simultaneously stabilising controllers is obtained in terms of matrix spectral norms. It is shown that this problem is solvable if a corresponding matrix spectral norm assignment problem is solvable. It is also shown that the matrix spectral norm assignment problem is equivalent to a bilinear matrix inequality (BMI) problem. A sufficient condition for the BMI problem is then derived and the condition is a linear matrix inequality feasibility problem, which can be solved easily. An example is provided to demonstrate the effectiveness of the proposed methodology.

References

    1. 1)
      • R. Sakes , J. Murray . Fractional representation algebraic geometry and the simultaneous stabilization problem. IEEE Trans. Autom. Control , 895 - 903
    2. 2)
    3. 3)
      • V. Blondel , M. Gevers . Simultaneous stabilizability of three linear system is rational undecidable. Math. Control Sig. Syst. , 135 - 145
    4. 4)
      • Toker, O., Ozbay, H.: `On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output-feedback', Proc. American Control Conf., Seattle, WA, USA, 1995.
    5. 5)
    6. 6)
      • M. Paskota , V. Sreeram , K.L. Teo , A.I. Meers . Optimal simultaneous stabilization of linear single-input systems via linear state feedback. Int. J. Control , 4 , 483 - 498
    7. 7)
      • Y.Y. Cao , Y.X. Sun . Static output-feedback simultaneous stabilization: ILMI approach. Int. J. Control , 5 , 803 - 814
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • Y.Y. Cao , J. Lam . A computational method for simultaneous LQ optimal control design via piecewise constant output-feedback. IEEE Trans. Syst. Man Cybern. B, Cybern. , 5 , 836 - 842
    12. 12)
    13. 13)
      • C.S. Kenney , G.A. Hewer . The sensitivity of the algebraic and differential Riccati equation. SIAM J. Control Optim. , 1 , 50 - 69
    14. 14)
    15. 15)
    16. 16)
      • H.S. Han , J.G. Lee . Stability analysis of interval matrices by Lyapunov function approach including ARE. Control Theory Adv. Technol. , 3 , 745 - 757
    17. 17)
      • S.H. Lin , Y.T. Juang , I.K. Fong , C.F. Hsu , T.S. Kuo . Dynamic interval systems analysis and design. Int. J. Control , 5 , 1807 - 1818
    18. 18)
      • T. Mori , H. Kokame . Convergence property of interval matrices and interval polynomials. Int. J. Control , 2 , 481 - 484
    19. 19)
      • A. Rachid . Robustness of pole assignment in a specified region for perturbed systems. Int. J. Syst. Sci. , 3 , 579 - 585
    20. 20)
      • P. Gahinet , A. Nemirovski , A. Laub , M. Chilali . (1995) LMI control toolbox.
    21. 21)
      • A. Weinmann . (1992) Uncertain models and robust control.
    22. 22)
      • F.R. Gantmacher . (1974) Theory of matrices.
    23. 23)
      • P. Gahinet , P. Apkarain . A linear matrix inequality approach to H∞ control. Int. J. Robust Nonlin. Control , 421 - 448
    24. 24)
      • S. Boyd , L.E. Ghaoui , E. Feron , V. Balakrishnan . (1994) Linear matrix inequalities in system and control theory.
    25. 25)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20040713
Loading

Related content

content/journals/10.1049/ip-cta_20040713
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address