Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Adaptive model predictive control for max-plus-linear discrete event input-output systems

Adaptive model predictive control for max-plus-linear discrete event input-output systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Recently, MPC has been extended to a class of discrete-event systems that can be described by a model that is ‘linear’ in max-plus algebra. An adaptive scheme for the time-varying case, based on parameter estimation of input-output models is presented. In a simulation example it is shown that the combined parameter-estimation/MPC algorithm gives a good closed-loop behaviour.

References

    1. 1)
      • Schullerus, G., Krebs, V.: `A method for estimating the holding times in timed event graphs', Proc. 6th Workshop on Discrete Event Systems (WODES), 2002, Zaragossa, Spain, p. 119–124.
    2. 2)
      • C.E. Garcia , D.M. Prett , M. Morari . Model predictive control: Theory and practice - a survey. Automatica , 3 , 335 - 348
    3. 3)
      • E. Menguy , J.L. Boimond , L. Hardouin , J.L. Ferrier . A first step towards adaptive control for linear systems in max algebra. Discrete Event Dyn. Syst. Theory Appl. , 4 , 347 - 367
    4. 4)
      • Schullerus, G., Krebs, V., van den Boom, T.J.J., De Schutter, B.: `Input signal design for max-plus-linear system identification using model predictive control', European Control Conf., Cambridge, UK, 2003, paper 26.
    5. 5)
      • Y.C. Ho . (1992) Discrete event dynamic systems: analyzing complexity and performance in the modern world.
    6. 6)
      • L. Ljung . (1999) System identification: theory for the user.
    7. 7)
      • J.L. Boimond , J.L. Ferrier . Internal model control and max-algebra: controller design. IEEE Trans. Autom. Control , 3 , 457 - 461
    8. 8)
      • De Schutter, B., van den Boom, T.J.J.: `Model predictive control for max-plus-linear systems', Proc. American Control Conf. 2000, June 2000, Chicago, IL, USA, p. 4046–4050.
    9. 9)
      • T.J.J. van den Boom , B. De Schutter . Properties of MPC for max-plus-linear systems. Eur. J. Control , 5
    10. 10)
      • Gallot, F., Boimond, J.L., Hardouin, L.: `Identification of simple elements in max-algebra: application to SISO discrete event systems modelisation', Proc. 4th European Control Conf., 1997, Brussels.
    11. 11)
      • B. De Schutter , T. van den Boom . Model predictive control for max-plus-linear discrete event systems. Automatica , 7 , 1049 - 1056
    12. 12)
      • K. Rudie , W.M. Wonham . Think globally, act locally: decentralized supervisory control. IEEE Trans. Autom. Control , 11 , 1692 - 1708
    13. 13)
      • B. Heidergott , R. de Vries . Towards a (max,+) control theory for public transportation networks. Discrete Event Dyn. Syst. Theory Appl. , 4 , 371 - 398
    14. 14)
      • Menguy, E.: `Contribution à la commande des systèmes linéaires dans les dioides', 1997, PhD thesis, Université d'Angers, Angers, France.
    15. 15)
      • D.W. Clarke , C. Mohtadi , P.S. Tuffs . Generalized predictive control – Part I. The basic algorithm. Automatica , 2 , 137 - 148
    16. 16)
      • R.A. Cuninghame-Green . (1979) Minimax algebra’, Lect. Notes Econ. Math. Syst..
    17. 17)
      • C.G. Cassandras , S. Lafortune . (1999) Introduction to discrete event systems.
    18. 18)
      • Libeaut, L., Loiseau, J.J.: `Admissible initial conditions and control of timed event graphs', Proc. 34th IEEE Conf. on Decision and Control, December 1995, New Orleans, LA, p. 2011–2016.
    19. 19)
      • E. Menguy , J.L. Boimond , L. Hardouin , J.L. Ferrier . A first step towards adaptive control for linear systems in max algebra. Discrete Event Dyn. Syst. Theory Appl. , 4 , 347 - 368
    20. 20)
      • E. Mosca . (1995) Optimal predictive and adaptive control.
    21. 21)
      • P.J. Ramadge , W.M. Wonham . Supervisory control of a class of discrete-event processes. SIAM J. Control Optim. , 1 , 206 - 230
    22. 22)
      • G. Cohen , S. Gaubert , J.P. Quadrat . Max-plus algebra and system theory: Where we are and where to go now. Ann. Rev. Control , 207 - 219
    23. 23)
      • E.F. Camacho , C. Bordons . (1995) Model predictive control in the process industry, advances in industrial control.
    24. 24)
      • J.M. Maciejowski . (2002) Predictive control with constraints.
    25. 25)
      • F. Baccelli , G. Cohen , G.J. Olsder , J.P. Quadrat . (1992) Synchronization and linearity.
    26. 26)
      • Menguy, E., Boimond, J.L., Hardouin, L.: `A feedback control in max-algebra', Presented at the European Control Conf. (ECC), July 1997, Brussels, Belgium, paper 487.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20040440
Loading

Related content

content/journals/10.1049/ip-cta_20040440
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address