Wiener model identification and predictive control of a pH neutralisation process

Access Full Text

Wiener model identification and predictive control of a pH neutralisation process

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wiener model identification and predictive control of a pH neutralisation process is presented. Input-output data from a nonlinear, first principles simulation model of the pH neutralisation process are used for subspace-based identification of a black-box Wiener-type model. The proposed nonlinear subspace identification method has the advantage of delivering a Wiener model in a format which is suitable for its use in a standard linear-model-based predictive control scheme. The identified Wiener model is used as the internal model in a model predictive controller (MPC) which is used to control the nonlinear white-box simulation model. To account for the unmeasurable disturbance, a nonlinear observer is proposed. The performance of the Wiener model predictive control (WMPC) is compared with that of a linear MPC, and with a more traditional feedback control, namely a PID control. Simulation results show that the WMPC outperforms the linear MPC and the PID controllers.

Inspec keywords: three-term control; identification; predictive control; chemical variables control; feedback; stochastic processes

Other keywords: model predictive controller; nonlinear first principles simulation model; Wiener model identification; subspace-based identification; feedback control; nonlinear subspace identification method; black-box Wiener-type model; PID control; pH neutralisation process

Subjects: Simulation, modelling and identification; Other topics in statistics; Chemical variables control; Optimal control

References

    1. 1)
      • S. Billings , S. Fakhouri . Identification of systems containing linear dynamic and static nonlinear elements. Automatica , 1 , 15 - 26
    2. 2)
      • S. Norquay , A. Palazoglu , J. Romagnoli . Application of Wiener Model Predictive Control (WMPC) to a pH neutralization experiment. IEEE Trans. Control Syst. Technol. , 4 , 437 - 445
    3. 3)
      • S. Sastry , M. Bodson . (1989) Adaptive control - stability convergence and robustness.
    4. 4)
      • W. Greblicki . Nonparametric identification of Wiener systems by orthogonal series. IEEE Trans. Autom. Control , 10 , 2077 - 2086
    5. 5)
      • M. Henson . Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. , 187 - 202
    6. 6)
      • Larimore, W.: `Canonical variate analysis in identification, filtering, and adaptive control', Proc. 29th IEEE Conf. on Decision and Control, Honolulu, HI, December 1990, p. 596–604.
    7. 7)
      • A. Kalafatis , N. Arifin , L. Wang , W. Cluett . A new approach to the identification of pH processes based on the Wiener model. Chem. Eng. Sci. , 23 , 3693 - 3701
    8. 8)
      • P. Van Overschee , B. de Moor . N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica , 1 , 75 - 93
    9. 9)
      • M. Henson , D. Seborg . Adaptive nonlinear control of a pH neutralization process. IEEE Trans. Control Syst. Technol. , 3 , 169 - 182
    10. 10)
      • H. Bloemen , C. Chou , T. van den Boom , V. Verdult , M. Verhaegen , T. Backx . Wiener model identification and predictive control for dual composition control of a distillation column. J. Process Control , 601 - 620
    11. 11)
      • J.M. Maciejowski . (2002) Predictive control with constraints.
    12. 12)
      • M. Morari , N. Ricker . (1994) Model predictive control toolbox-for use with Matlab, user's guide.
    13. 13)
      • L. Ljung . (1999) System identification: theory for the user.
    14. 14)
      • K. Fruzzetti , A. Palazoglu , K. McDonald . Nonlinear model predictive control using Hammerstein models. J. Process Control , 1 , 31 - 41
    15. 15)
      • L. Ljung . (2000) System identification: toolbar, user's guide, ver. 5.
    16. 16)
      • M.A. Henson , D.E. Seborg . (1997) Nonlinear process control.
    17. 17)
      • N. Narayanan , P. Krishnaswamy , G. Rangaiah . An adaptive internal model control strategy for pH neutralization. Chem. Eng. Sci. , 18 , 3067 - 3074
    18. 18)
      • M. Verhaegen . Identification of the deterministic part of MIMO state space models given in innovations form from input-out data. Automatica , 1 , 61 - 74
    19. 19)
      • M. Verhaegen , D. Westwick . Identifying MIMO Hammerstein systems in the context of subspace model identification methods. Int. J. Control , 2 , 331 - 349
    20. 20)
      • B. Friedland . A nonlinear observer for estimating parameters, in dynamic systems. Automatica , 8 , 1525 - 1530
    21. 21)
      • D. Westwick , M. Verhaegen . Identifying MIMO Wiener systems using subspec model identification methods. Signal Process. , 235 - 258
    22. 22)
      • S. Boyd , L. Chua . Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. , 11 , 1150 - 1161
    23. 23)
      • A. Isidori . (1989) Nonlinear control systems.
    24. 24)
      • T. Wigren . Recursive prediction error identification using the nonlinear Wiener model. Automatica , 4 , 1011 - 1025
    25. 25)
      • M. Pottmann , D. Seborg . A nonlinear predictive control strategy based on radial basis functions models. Comput. Chem. Eng. , 9 , 965 - 980
    26. 26)
      • R. Padwardhan , S. Lakshminarayanan , S. Shah . Constrained nonlinear MPC using Hammerstein and Wiener models: PLS framerwork. AICHE J. , 7 , 1611 - 1622
    27. 27)
      • E.F. Camacho , C. Bordons . (2004) Model predictive control.
    28. 28)
      • S. Norquay , A. Palazoglu , J. Romagnoli . Model predictive control based on Wiener models. Chem. Eng. Sci. , 1 , 75 - 84
    29. 29)
      • Gómez, J.C., Baeyens, E.: `Subspace identification of multivarial Hammerstein and Wiener models', Proc. 15th International Federation of Automatic Control World Congress, Barcelona, Spain, July 2002, p. 2849–2854.
    30. 30)
      • R. Wright , C. Kravaris . Nonlinear control of pH processes using the strong acid equivalent. Ind. Eng. Chem. Res. , 7 , 1561 - 1572
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20040438
Loading

Related content

content/journals/10.1049/ip-cta_20040438
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading