http://iet.metastore.ingenta.com
1887

Wiener model identification and predictive control of a pH neutralisation process

Wiener model identification and predictive control of a pH neutralisation process

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Wiener model identification and predictive control of a pH neutralisation process is presented. Input-output data from a nonlinear, first principles simulation model of the pH neutralisation process are used for subspace-based identification of a black-box Wiener-type model. The proposed nonlinear subspace identification method has the advantage of delivering a Wiener model in a format which is suitable for its use in a standard linear-model-based predictive control scheme. The identified Wiener model is used as the internal model in a model predictive controller (MPC) which is used to control the nonlinear white-box simulation model. To account for the unmeasurable disturbance, a nonlinear observer is proposed. The performance of the Wiener model predictive control (WMPC) is compared with that of a linear MPC, and with a more traditional feedback control, namely a PID control. Simulation results show that the WMPC outperforms the linear MPC and the PID controllers.

References

    1. 1)
      • M. Henson , D. Seborg . Adaptive nonlinear control of a pH neutralization process. IEEE Trans. Control Syst. Technol. , 3 , 169 - 182
    2. 2)
      • M.A. Henson , D.E. Seborg . (1997) Nonlinear process control.
    3. 3)
      • N. Narayanan , P. Krishnaswamy , G. Rangaiah . An adaptive internal model control strategy for pH neutralization. Chem. Eng. Sci. , 18 , 3067 - 3074
    4. 4)
      • R. Wright , C. Kravaris . Nonlinear control of pH processes using the strong acid equivalent. Ind. Eng. Chem. Res. , 7 , 1561 - 1572
    5. 5)
      • J.M. Maciejowski . (2002) Predictive control with constraints.
    6. 6)
      • M. Henson . Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. , 187 - 202
    7. 7)
      • M. Pottmann , D. Seborg . A nonlinear predictive control strategy based on radial basis functions models. Comput. Chem. Eng. , 9 , 965 - 980
    8. 8)
      • K. Fruzzetti , A. Palazoglu , K. McDonald . Nonlinear model predictive control using Hammerstein models. J. Process Control , 1 , 31 - 41
    9. 9)
      • R. Padwardhan , S. Lakshminarayanan , S. Shah . Constrained nonlinear MPC using Hammerstein and Wiener models: PLS framerwork. AICHE J. , 7 , 1611 - 1622
    10. 10)
      • S. Norquay , A. Palazoglu , J. Romagnoli . Model predictive control based on Wiener models. Chem. Eng. Sci. , 1 , 75 - 84
    11. 11)
      • S. Norquay , A. Palazoglu , J. Romagnoli . Application of Wiener Model Predictive Control (WMPC) to a pH neutralization experiment. IEEE Trans. Control Syst. Technol. , 4 , 437 - 445
    12. 12)
      • A. Kalafatis , N. Arifin , L. Wang , W. Cluett . A new approach to the identification of pH processes based on the Wiener model. Chem. Eng. Sci. , 23 , 3693 - 3701
    13. 13)
      • S. Boyd , L. Chua . Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. , 11 , 1150 - 1161
    14. 14)
      • H. Bloemen , C. Chou , T. van den Boom , V. Verdult , M. Verhaegen , T. Backx . Wiener model identification and predictive control for dual composition control of a distillation column. J. Process Control , 601 - 620
    15. 15)
      • W. Greblicki . Nonparametric identification of Wiener systems by orthogonal series. IEEE Trans. Autom. Control , 10 , 2077 - 2086
    16. 16)
      • T. Wigren . Recursive prediction error identification using the nonlinear Wiener model. Automatica , 4 , 1011 - 1025
    17. 17)
      • S. Billings , S. Fakhouri . Identification of systems containing linear dynamic and static nonlinear elements. Automatica , 1 , 15 - 26
    18. 18)
      • P. Van Overschee , B. de Moor . N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica , 1 , 75 - 93
    19. 19)
      • M. Verhaegen . Identification of the deterministic part of MIMO state space models given in innovations form from input-out data. Automatica , 1 , 61 - 74
    20. 20)
      • Larimore, W.: `Canonical variate analysis in identification, filtering, and adaptive control', Proc. 29th IEEE Conf. on Decision and Control, Honolulu, HI, December 1990, p. 596–604.
    21. 21)
      • D. Westwick , M. Verhaegen . Identifying MIMO Wiener systems using subspec model identification methods. Signal Process. , 235 - 258
    22. 22)
      • M. Verhaegen , D. Westwick . Identifying MIMO Hammerstein systems in the context of subspace model identification methods. Int. J. Control , 2 , 331 - 349
    23. 23)
      • Gómez, J.C., Baeyens, E.: `Subspace identification of multivarial Hammerstein and Wiener models', Proc. 15th International Federation of Automatic Control World Congress, Barcelona, Spain, July 2002, p. 2849–2854.
    24. 24)
      • B. Friedland . A nonlinear observer for estimating parameters, in dynamic systems. Automatica , 8 , 1525 - 1530
    25. 25)
      • S. Sastry , M. Bodson . (1989) Adaptive control - stability convergence and robustness.
    26. 26)
      • A. Isidori . (1989) Nonlinear control systems.
    27. 27)
      • L. Ljung . (2000) System identification: toolbar, user's guide, ver. 5.
    28. 28)
      • L. Ljung . (1999) System identification: theory for the user.
    29. 29)
      • E.F. Camacho , C. Bordons . (2004) Model predictive control.
    30. 30)
      • M. Morari , N. Ricker . (1994) Model predictive control toolbox-for use with Matlab, user's guide.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20040438
Loading

Related content

content/journals/10.1049/ip-cta_20040438
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address