Manipulator velocity control using friction compensation

Access Full Text

Manipulator velocity control using friction compensation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The velocity control of a direct-drive mechanical arm with high friction is considered. The friction at the robot joints is assumed to be captured by a bristle deflection model. Two joint velocity controllers with friction compensation are introduced. Experiments show the superiority of the proposed schemes with respect to the velocity controllers when friction is compensated using the classical viscous plus Coulomb model of friction.

Inspec keywords: two-term control; friction; eigenvalues and eigenfunctions; compensation; velocity control; manipulator dynamics; closed loop systems

Other keywords: velocity control; manipulator; eigenvalues; direct-drive mechanical arm; dynamics; friction compensation; closed-loop system; bristle deflection model; PD control

Subjects: Control system analysis and synthesis methods; Velocity, acceleration and rotation control; Algebra; Manipulators

References

    1. 1)
      • Corke, P.: `The unimation puma servo system', MTM-226, July 1994.
    2. 2)
    3. 3)
    4. 4)
      • B. Armstrong-Hélouvry , P. Dupont , C. Canudas de Wit . A survey of analysis tools and compensation methods for the control of machines with friction. Automatica , 7 , 1083 - 1138
    5. 5)
      • M. Vidyasagar . (2002) Nonlinear systems analysis.
    6. 6)
      • Nilsson, K.: `Industrial robot programming', 1996, PhD, Lund Institute of Technology, Dept. of Automatic Control, Lund, Sweden.
    7. 7)
      • De Carli, A., Cong, S., Matacchioni, D.: `Dynamic friction compensation in servodrives', Proceedings of the 3rd IEEE conference on Control applications, September 1994, p. 193–198.
    8. 8)
    9. 9)
      • C. Canudas de Wit . Comments on A new model for control of systems with friction. IEEE Trans. Autom. Control , 8 , 1189 - 1190
    10. 10)
    11. 11)
      • H. Asada , T. Kanade , I. Takeyama . Control of a direct-drive arm. Trans. ASME, J. Dyn. Syst., Meas. Control , 136 - 142
    12. 12)
      • I.Y.S. Luh . Conventional controller design for industrial robots—A tutorial. IEEE Trans. Syst., Man Cybern. , 3 , 298 - 316
    13. 13)
      • Olsson, H.: `Control systems with friction', 1996, PhD, Lund Institute of Technology, Dept. of Automatic Control, Lund, Sweden.
    14. 14)
      • P.R. Dahl . Solid friction damping of mechanical vibrations. AIAA J. , 12 , 1675 - 1682
    15. 15)
      • C. Canudas de wit , B. Siciliano , G. Bastin . (1996) Theory of robot control.
    16. 16)
      • N. Barabanov , R. Ortega . Necessary and sufficient conditions for passivity of the LuGre friction model. IEEE Trans. Autom. Control , 4 , 830 - 832
    17. 17)
    18. 18)
      • De Jager, B., Banens, J.: `Experimental evaluations of robot controllers', Proceedings of the 33rd IEEE Conference on Decision and control, December 1994, Lake Buena Vista, FL, p. 363–368.
    19. 19)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20030083
Loading

Related content

content/journals/10.1049/ip-cta_20030083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading