Numerical robust stability analysis of fuzzy feedback linearisation regulator based on linear matrix inequality approach

Access Full Text

Numerical robust stability analysis of fuzzy feedback linearisation regulator based on linear matrix inequality approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A numerical robust stability analysis for the fuzzy feedback linearisation regulator is presented using linear matrix inequalities (LMI) theory. The well known Takagi–Sugeno fuzzy model is used as the nonlinear plant model. Uncertainty is assumed to be included in the model structure with known bounds. For this structured uncertainty, the closed system can be cast into a Lur'e system by a simple transformation. From the LMI stability condition for the Lur'e system, we can derive the robust stability condition for the fuzzy feedback linearisation regulator based on the Takagi–Sugeno fuzzy model. The effectiveness of the proposed analysis is illustrated by a computer simulation.

Inspec keywords: fuzzy control; robust control; nonlinear control systems; stability

Other keywords: LMl stability; robust stability; Takagi-Sugeno fuzzy model; linearisation regulator; linear matrix inequalities; nonlinear plant model; fuzzy feedback; Lur'e system; nonlinear control theory

Subjects: Stability in control theory; Fuzzy control; Nonlinear control systems

References

    1. 1)
      • L.X. WANG . (1994) , Adaptive fuzzy systems and control: design and stability analysis.
    2. 2)
      • E. KIM , H.J. KANG , M. PARK . Numerical stability analysis of fuzzy control systems via quadratic programming and linear matrix inequalities. IEEE Trans. Fuzzy Syst. , 4 , 333 - 346
    3. 3)
      • H.O. WANG , K. TANAKA , F.G. GRIFIIN . An approach to fuzzy control of nonlinear system: stability and design issues. IEEE Trans. Fuzzy Syst. , 1 , 14 - 23
    4. 4)
      • T. Takagi , M. Sugeno . Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. , 1 , 116 - 132
    5. 5)
      • Y. NESTEROV , A. NEMIROVSKY . (1994) , Interior-point polynomial methods in convex programming.
    6. 6)
      • LAM, H.K., LEUNG, F.H.F., TAM, P.K.S.: `An improved stability analysis and design of fuzzy control systems', Proceedings of FUZZ-IEEE'99, 1999, Seoul, Korea, p. 430–433.
    7. 7)
      • P. GAHINET , A. NEMIROVSKI , A.J. LAUB , M. CHILALI . (1995) , LMI control toolbox.
    8. 8)
      • H.T. NGUYEN , N.R. PRASAD . (1999) , Fuzzy modeling and control.
    9. 9)
      • LEE, H.J., JOO, Y.H., PARK, J.B., SHIEH, L.S.: `Intelligent digitally redesigned PAM fuzzy controller for nonlinear systems', Proceedings of IEEE international conference on Fuzzy systems, 1999, Seoul, Korea, p. 904–909.
    10. 10)
      • D.L. TSAY , H.Y. CHUNG , C.J. LEE . The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logic. IEEE Trans. Fuzzy Syst. , 2 , 225 - 229
    11. 11)
      • J.J.E. SLOTINE . (1991) , Applied nonlinear control.
    12. 12)
      • A.I. LUR'E . (1957) , Some nonlinear problems in the theory of automatic control.
    13. 13)
      • M. SUGENO . (1988) , Fuzzy control.
    14. 14)
      • H.J. KANG , C. KWON , C.H. LEE , M. PARK . Robust stability analysis and design method for the fuzzy feedback linearization regulator. IEEE Trans. Fuzzy Syst. , 4 , 464 - 472
    15. 15)
      • K. FISCHLE , D. SCHRODER . An improved stable adaptive fuzzy control method. IEEE Trans. Fuzzy Syst. , 1 , 27 - 40
    16. 16)
      • Y.H. JOO , L.S. SHIEH , G. CHEN . Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems. IEEE Trans. Fuzzy Syst. , 4 , 394 - 408
    17. 17)
      • A. Isidori . (1989) , Nonlinear control systems.
    18. 18)
      • K. Tanaka , T. Ikeda , H.O. Wang . Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. , 1 , 1 - 13
    19. 19)
      • TANIGUCHI, T., TANAKA, K., YAMAFUGI, K., WANG, H.O.: `A new PDC for fuzzy reference models', Proceedings of FUZZ-IEEE'99, 1999, Seoul, Korea, p. 898–903.
    20. 20)
      • S. BOYD , L.E. GHAOUI , E. FERON , V. BALAKRISHNAN . (1994) , Linear matrix inequalities in systems and control theory.
    21. 21)
      • B.S. Chen , C.H. Lee , Y.C. Chang . H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. , 1 , 32 - 43
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20020255
Loading

Related content

content/journals/10.1049/ip-cta_20020255
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading