http://iet.metastore.ingenta.com
1887

PID controllers: recent tuning methods and design to specification

PID controllers: recent tuning methods and design to specification

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

PID control is a control strategy that has been successfully used over many years. Simplicity, robustness, a wide range of applicability and near-optimal performance are some of the reasons that have made PID control so popular in the academic and industry sectors. Recently, it has been noticed that PID controllers are often poorly tuned and some efforts have been made to systematically resolve this matter. In the paper a brief summary of PID theory is given, then some of the most used PID tuning methods are discussed and some of the more recent promising techniques explored.

References

    1. 1)
      • ÅSTRÖM, K.J., HÄGGLUND, T.: `Automatic tuning of PID controllers', ISA, 1988.
    2. 2)
      • K.J. ÅSTRÖM , T. HÄGGLUND . (1996) PID control, The control handbook.
    3. 3)
      • J.G. Ziegler , N.B. Nichols . Optimum settings for automatic controllers. Trans. ASME , 759 - 768
    4. 4)
      • T. HÄGGLUND , K.J. ÅSTRÖM . (1996) Automatic tuning of PID controllers, The control handbook.
    5. 5)
      • K.J. Astrom , C.C. Hang , P. Persson , W.K. Ho . Towards intelligent PID control. Automatica , 1 , 1 - 9
    6. 6)
      • SOYLEMEZ, M.T.: `Pole assignment for uncertain systems', UMIST, Control Systems Centre Series, 1999.
    7. 7)
      • K.J. Astrom , T. Hagglund . Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica , 645 - 651
    8. 8)
      • W.K. HO , C.C. HANG , L.S. CAO . Tuning of PID controllers based on gain and phase margin specifications. Automatica , 3 , 497 - 502
    9. 9)
      • A.T. SHENTON , Z. SHAFIEI . Relative stability for control systems with adjustable parameters. J. Guid. Control Dyn. , 304 - 310
    10. 10)
      • Z. SHAFIEI , A.T. SHENTON . Tuning of PID-type controllers for stable and unstable systems with time delay. Automatica , 10 , 1609 - 1615
    11. 11)
      • Z. SHAFIEI , A.T. SHENTON . Frequency-domain design of PID controllers for stable and unstable systems with time delay. Automatica , 12 , 2223 - 2232
    12. 12)
      • S.P. BHATTACHARYYA , H. CHAPELLAT , L.H. KEEL . (1995) , Robust control: the parametric approach.
    13. 13)
      • H. CHAPELLAT , S.P. BHATTACHARYYA . A generalization of Kharitonov's theorem: robust stability of internal plants. IEEE Trans. Autom. Control , 306 - 311
    14. 14)
      • A.C. BARTLETT , C.V. HOLLOT , H. LIN . Root location of an entire polytope of polynomials: it suffices to check the edges. Math. Control Signals Syst. , 61 - 71
    15. 15)
      • HO, M.T., DATTA, A., BHATTACHARYYA, S.P.: `Design of P, PI and PID controllers for interval plants', Proceedings of the American Control Conference, June 1998, Philadelphia, Pennsylvania, p. 2496–2501.
    16. 16)
      • H. MING-TZU , A. DATTA , S.P. BHATTACHARYYA . (1999) Generalizations of the Hermite–Biehler theorem, ,.
    17. 17)
      • BULUT, B.: `The systematic design of PID controllers', 1998, MSc thesis, CSC, UMIST, Manchester, UK.
    18. 18)
      • H. XU , A. DATTA , S.P. BHATTACHARYYA . Computation of all stabilizing PID gains for digital control systems. IEEE Trans. Autom. Control , 4 , 647 - 652
    19. 19)
      • MUNRO, N.: `The systematic design of PID controllers for continuous and discrete systems', IEE Colloquium on Advances in computer-aided control systems design, June 1999, Birmingham.
    20. 20)
      • MUNRO, N., SOYLEMEZ, M.T.: `Fast calculation of stabilizing PID controllers for uncertain systems', IFAC Conference, June 2000, Prague, ROCOND.
    21. 21)
      • SILVA, G.J., DATTA, A., BHATTACHARYYA, S.P.: `Stabilization of time delay systems', Proceedings of the American Control Conference, June 2000, Chicago, Illinois, p. 963–970.
    22. 22)
      • O'MAHONY, T., DOWNING, C.J., FATLA, K.: `Genetic algorithms for PID parameter optimization: minimizing error criteria', , p. 148–153, Cork Institute of Technology, Cork, Ireland.
    23. 23)
      • LIN, F., BRANDT, R.D., SAIKALIS, G.: `Self-tuning of PID controllers by adaptive interaction', Proceedings of the American Control Conference, June 2000, Chicago, Illinois, p. 3676–3681.
    24. 24)
      • BRANDT, R.D., LIN, F.: `Supervised learning in neural networks without explicit error back-propagation', Proceedings of the 32nd Annual Allerton Conference on Communication, control and computing, 1994, p. 294–303.
    25. 25)
      • D.G. Luenberger . (1969) , Optimization by vector space methods.
    26. 26)
      • ISAKSSON, A.J., GRAEBE, S.F.: `Model reduction for PID design', IFAC World Congress, 1993, Sydney, Australia, Vol. 8, p. 257–262.
    27. 27)
      • A.J. ISAKSSON , S.F. GRAEBE . Analytical PID parameter expressions for higher order systems. Automatica , 6 , 1121 - 1130
    28. 28)
      • D.E. RIVERA , M. MORARI , S. SKOGESTAD . Internal model control. Part 4: PID controller design. Int. Eng. Chem. Process. Des. Dev. , 252 - 265
    29. 29)
      • C.E. GARCIA , M. MORARI . Internal model control. Part 2: A unifying review and some new results. Ind. Eng. Chem. Process. Des. Dev. , 308 - 323
    30. 30)
      • THOMASSON, F.Y.: `Controller tuning methods', Process control fundamentals for the pulp and paper industry, 1995, Tappi Press, p. 215–274.
    31. 31)
      • F.B. DAHLIN . Designing and tuning digital controllers. Instr. Control Syst. , 42 - 77
    32. 32)
      • S. KAHNE . Pole-zero cancellations in SISO linear feedback systems. IEEE Trans. Educ. , 3 , 240 - 243
    33. 33)
      • ISAKSSON, A.J., GRAEBE, S.F.: `Model reduction for design of digital PID controllers', Proceedings of the 3rd European Control Conference, September 1995, Rome, Italy, p. 2191–2196.
    34. 34)
      • D.E. RIVERA , M. MORARI . Control-relevant model reduction problems for SISO H2 , H∞, and μ-controller synthesis. Int. J. Control , 2 , 505 - 527
    35. 35)
      • B.D.O. ANDERSON , Y. LIU . Controller reduction: concepts and approaches. IEEE Trans. Autom. Control , 8 , 802 - 812
    36. 36)
      • KEVICZKY, L., BÁNYÁSZ, C.: `Designing PID regulators using K-B-parametrization', Process control and instrumentation, 2000, Glasgow, p. 356–363.
    37. 37)
      • J. UMLAND , M. SAFIUDDIN . Magnitude and symmetric optimum criterion for the design of linear control systems—What is it and how does it compare with the others?. IEEE Ind. Appl. Soc. Trans.
    38. 38)
      • K.J. STRÖM , T. HÄGGLUND . (1995) , PID controllers: theory, design, and tuning.
    39. 39)
      • H. RAKE . (1987) Identification: transient and frequency response methods, Systems and Control Encyclopedia.
    40. 40)
      • VRANC̆IĆ, D., PENG, Y., PETROVC̆IC̆, J.: `A new simple autotuning method for PID controllers', Preprints of the 2nd IFAC Workshop on the New trends in design of control systems, August 1997, Smolenice, p. 457–462.
    41. 41)
      • E. GRASSI , K. TSAKALIS , S. DASH , S.V. GAIKWAD , W. MACARTHUR , G. STEIN . Integrated system identification and PID controller tuning by frequency loop-shaping. IEEE Trans. Control Syst. Technol. , 2 , 285 - 294
    42. 42)
      • E. GRASSI , K. TSAKALIS . PID controller tuning by frequency loop-shaping: Application to diffusion furnace temperature control. IEEE Trans. Control Syst. Technol. , 5 , 842 - 847
    43. 43)
      • A.A. Voda , I.D. Landau . A method for the auto-calibration of PID controllers. Automatica , 1 , 41 - 53
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20020103
Loading

Related content

content/journals/10.1049/ip-cta_20020103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address