http://iet.metastore.ingenta.com
1887

Genetic algorithm approach to designing finite-precision controller structures

Genetic algorithm approach to designing finite-precision controller structures

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The parameters of a digital control design usually need to be rounded when the controller is implemented with finite precision arithmetic. This often results in degradation of the closed loop performance and reduced stability margins. This paper presents a multi-objective genetic algorithm based approach to designing the structure of a finite-precision second-order state space controller implementation, which can simultaneously minimise some set of performance degradation indices and implementation cost indices. The approach provides a set of solutions that are near Pareto-optimal, and so allows the designer to trade-off performance degradation against implementation cost. The method is illustrated by the design of the structure of a PID controller for the IFAC93 benchmark problem.

References

    1. 1)
      • CLARKE, P.: `MATRIXx 6.0: a fixed point development process for automotive applications', IMechE seminar publication – automotive electronics (Autotech '97), 1997, Mechanical Engineering Publications, Birmingham, UK, p. 59–67.
    2. 2)
      • M.K. MASTEN , I. PANAHI . Digital signal processors for modern control systems. Contr. Eng. Pract. , 4 , 449 - 458
    3. 3)
      • J.B. KNOWLES , R. EDWARDS . Effect of a finite-word-length computer in a sampled-data feedback system. Proc. IEE , 6 , 1197 - 1207
    4. 4)
      • MORONY, P.: `Issues in the implementation of digital feedback compensators', Signal processing, optimization, and control series, 1983, MIT Press, Cambridge, MA, No. 5.
    5. 5)
      • WILLIAMSON, D.: `Digital control and implementation: finite wordlength considerations', Systems and control engineering, 1991, Prentice Hall, Englewood Cliffs, NJ.
    6. 6)
      • M. GEVERS , G. LI . (1993) , Parametrizations in control, estimations and filtering problems: accuracy aspects.
    7. 7)
      • R.H. ISTEPANIAN , G. LI , J. WU , J. CHU . Analysis of sensitivity measures of finite-precision digital controller structures with closed-loop stability bounds. IEE Proc. Contr. Theory Appl. , 5 , 472 - 478
    8. 8)
      • S. CHEN , J. WU , R.H. ISTEPANIAN , J. CHU , J.F. WHIDBORNE . Optimizing stability bounds of finite-precision controller structures for sampled-data systems in the δ-operator domain. IEE Proc. Control Theory Appl. , 6 , 517 - 526
    9. 9)
      • J.F. WHIDBORNE , J. WU , R.H. ISTEPANIAN . Finite word length stability issues in an ℓ1 framework. Int. J. Contr. , 2 , 166 - 176
    10. 10)
      • D.J. XU , M.L. DALEY . Design of optimal digital filter using a parallel genetic algorithm. IEEE Trans. Circuits Syst.: II , 10 , 673 - 675
    11. 11)
      • K. UESAKA , M. KAWAMATA . Synthesis of low coefficient sensitivity digital filters using genetic programming. Proc. IEEE Int. Symp. Circuits Syst.
    12. 12)
      • FONSECA, C.M., FLEMING, P.J.: `Genetic algorithms for multiobjective optimization: formulation, discussion and generalization', Genetic algorithms: proceedings of the fifth international conference, 1993, San Mateo, CA, p. 416–423.
    13. 13)
      • FONSECA, C.M., FLEMING, P.J.: `Multiobjective genetic algorithms', IEE colloquium on genetic algorithms for control systems engineering, 1993, London, UK, p. 6/1–6/5No. 1993/130, .
    14. 14)
      • C.M. FONSECA , P.J. FLEMING . Multiobjective optimization and multiple constraint handling with evolutionary algorithms – part I: a unified formulation. IEEE Trans. Syst. Man & Cybernetics, A , 1 , 26 - 37
    15. 15)
      • MAN, K.F., TANG, K.S., KWONG, S., HALANG, W.A.: `Genetic algorithms for control and signal processing', Advances in industrial control, 1997, Springer, London, UK.
    16. 16)
      • K.S. TANG , K.F. MAN , D.-W. GU . Structured genetic algorithm for robust H∞ control system design. IEEE Trans. Ind. Electr. , 15 , 575 - 582
    17. 17)
      • N.V. DAKEV , J.F. WHIDBORNE , A.J. CHIPPERFIELD , P.J. FLEMING . H∞ design of an EMS control system for a magley vehicle using evolutionary algorithms. Proc. I MechE, Part I: J. Syst. & Contr. , 4 , 345 - 355
    18. 18)
      • GRAEBE, S.F.: `Benchmark IFAC 93: Adaptive/robust control of unknown plant', Preconference communication, 1992.
    19. 19)
      • J.F. WHIDBORNE , G. MURAD , D.-W. GU , I. POSTLETHWAITE . Robust control of an unknown plant – the IFAC 93 benchmark. Int. J. Control , 3 , 589 - 640
    20. 20)
      • D.E. Goldberg . (1989) , Genetic algorithms in search, optimization and machine learning.
    21. 21)
      • I.N. HERNSTEIN , D.J. WINTER . (1988) , Matrix theory and linear algebra.
    22. 22)
      • R.A. Horn . (1985) , Matrix analysis.
    23. 23)
      • S. BARNETT . (1971) , Matrices in control theory – with applications to linear programming.
    24. 24)
      • R.A. HORN , C.R. JOHNSON . (1991) , Topics in matrix analysis.
    25. 25)
      • A. CHIPPERFIELD , P.J. FLEMING , H. POHLHEIM , C.M. FONSECA . (1994) , Genetic algorithm toolbox: user's guide.
    26. 26)
      • K. ZHOU , J.C. DOYLE , K. GLOVER . (1996) , Robust and optimal control.
    27. 27)
      • L.H. KEEL , S.P. BHATTACHARRYYA . Robust, fragile, or optimal?. IEEE Trans. , 8 , 1098 - 1105
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20010604
Loading

Related content

content/journals/10.1049/ip-cta_20010604
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address