Polynomial LQG synthesis of subrate digital feedback systems

Access Full Text

Polynomial LQG synthesis of subrate digital feedback systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper describes the optimal synthesis of digital feedback systems in which the plant output signal is sampled at a faster rate than the control is activated. The design methodology is predicated upon the extension of the `polynomial equations' approach to multirate-sampled configurations via the use of input-output models constituting sets of cyclically time-varying difference equations.

Inspec keywords: polynomials; difference equations; linear quadratic Gaussian control; feedback; sampled data systems; control system synthesis

Other keywords: design methodology; subrate digital feedback systems; optimal synthesis; input-output models; cyclically time-varying difference equations; polynomial LQG synthesis

Subjects: Optimal control; Algebra; Control system analysis and synthesis methods; Mathematical analysis; Discrete control systems

References

    1. 1)
      • ARAKI, M., HAGIWARA, T., SOMA, H.: `Application of multilevel multirate sampled-data controllers to simultaneous pole-assignment problem', Proceedings of the IEEE Conference on Decision and. Control, 1992, Tucson, AZ, USA, p. 1762–1767.
    2. 2)
      • ARAKI, M.: `Recent developments in digital control theory', Proceedings of the IFAC World Congress, 1993, Sydney, Australia, 9, p. 251–259.
    3. 3)
      • A.W. TRUMAN . An analysis of subrate control systems. Int. J. Control , 2 , 363 - 392
    4. 4)
      • G.C. Newton , L.A. Gould , J.F. Kaiser . (1961) , Analytical design of linear feedback controls.
    5. 5)
      • T. Hagiwara , T. Fujimura , M. Araki . Generalized multirate-output controllers. Int. J. Control , 3 , 597 - 612
    6. 6)
      • M. STERNAD , A. AHLÉN . A novel derivation methodology for polynomial-LQ controller design. IEEE Trans. , 116 - 121
    7. 7)
      • R.E. Kalman , J.E. Bertram . A unified approach to the theory of sampling systems. J. Franklin Inst. , 405 - 436
    8. 8)
      • A.W. TRUMAN . A subrate weighted minimum variance control law. Int. J. Control , 1 , 93 - 115
    9. 9)
      • SKLANSKY, J.: `Network compensation of error-sampled feedback systems', 1955, Ph.D. dissertation, Columbia University, New York.
    10. 10)
      • H. WERNER . Multimodel robust control by fast output sampling–an LMI approach. Automatica , 12 , 1625 - 1630
    11. 11)
      • M.J. ER , B.D.O. ANDERSON . Practical issues in multirate output controllers. Int. J. Control , 5 , 1005 - 1020
    12. 12)
      • J.B. KNOWLES , R. EDWARDS . Aspects of subrate digital control systems. Proc. Inst. Elec. Eng. , 1893 - 1901
    13. 13)
      • V. Kucera . (1979) , Discrete linear control.
    14. 14)
      • M.J. ER , B.D.O. ANDERSON . Performance study of multirate output controllers under noise disturbances. Int. J. Control , 3 , 531 - 545
    15. 15)
      • H.M. AL-RAHMANI , G.F. FRANKLIN . A new optimal multirate control of linear periodic and time-invariant systems. IEEE Trans. , 406 - 415
    16. 16)
      • C.P. GLASSON . Development and applications of multirate digital control. Control Syst. Mag. , 2 - 8
    17. 17)
      • G.M. KRANC . Input-output analysis of multirate feedback systems. IRE Trans. Aut. Control , 21 - 28
    18. 18)
      • E. MOSCA . (1995) , Optimal, predictive and adaptive control.
    19. 19)
      • M. STERNAD , A. AHLÉN , K. HUNT . (1992) LQ controller design and self-tuning control, Polynomial methods in optimal control and filtering.
    20. 20)
      • K.J. Astrom , B. Wittenmark . (1984) , Computer controlled systems: theory and design.
    21. 21)
      • T.C. COFFEY , I.J. WILLIAMS . Stability analysis of multiloop, multirate sampled systems. AIAA J. , 12 , 2178 - 2190
    22. 22)
      • D.C. YOULA , J.J. BONGIORNO , H.A. JABR . Modern Wiener–Hopf design of optimal controllers-Part 1: the single-input-output case. IEEE Trans. , 3 - 13
    23. 23)
      • T.W. Chen , L. Qiu . H∞ design of general multirate sampled-data control systems. Automatica , 7 , 1139 - 1152
    24. 24)
      • J. ACKERMAN . (1985) , Sampled data control systems.
    25. 25)
      • M.C. BERG , N. AMIT , J.D. POWELL . Multirate digital control system design. IEEE Trans. , 1139 - 1150
    26. 26)
      • TRUMAN, A.W.: `Multi-rate sampled-data feedback system synthesis via a long-range predictive control approach', Proceedings of the UKACC Conference on Control, 1998, Swansea, UK, p. 596–601.
    27. 27)
      • T. HAGIWARA , M. ARAKI . Design of a stable state feedback controller based on the multirate sampling of the plant output. IEEE Trans. , 812 - 819
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_20000295
Loading

Related content

content/journals/10.1049/ip-cta_20000295
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading