Owing to its superior performance in highspeed signal processing/control, work on deltaoperator based discrete time system implementations have attracted considerable attention. Stability and performance of such a system is closely related to the root distribution of its characteristic equation with respect to a certain `shifted' circle in the complex plane; the underlying sampling time determines its centre and radius. An algorithm that checks root distribution of a given polynomial with respect to this stability boundary is proposed. It is based on a scaled version of the well known Marden–Jury table that determines root distribution with respect to the unit circle in the complex plane; this is the stability boundary corresponding to discrete time systems that are implemented using the more conventional shift operator. The Marden–Jury table offers several additional advantages that are not all present in other available algorithms applicable to shift operator based polynomials. The proposed algorithm possesses all these properties, and the scaling scheme used ensures improved numerical accuracy and the existence of a limiting form.
References


1)

G. LIKOUREZOS
.
Prolog to Highspeed digital signal processing and control.
Proc. IEEE
,
238 
239

2)

G.C. GOODWIN ,
R.H. MIDDLETON ,
H.V. POOR
.
Highspeed digital signal processing and control.
Proc. IEEE
,
240 
259

3)

R.H. MIDDLETON ,
G.C. GOODWIN
.
(1990)
, Digital control and estimation: A unified approach.

4)

G. LI ,
M. GEVERS
.
Roundoff noise minimization using deltaoperator realizations.
IEEE Trans.
,
629 
637

5)

K. PREMARATNE ,
R. SALVI ,
N.R. HABIB ,
J.P. LE GALL
.
Deltaoperator formulated discretetime approximations of continuoustime systems.
IEEE Trans.
,
581 
585

6)

(1998)
, MATLAB user's guide, Version 5.2.0.

7)

E.I. JURY
.
A modified stability table for linear discrete systems.
Proc. IEEE
,
184 
185

8)

E.I. JURY
.
A note on the modified stability table for linear discrete time system.
IEEE Trans.
,
221 
223

9)

B.D.O. ANDERSON ,
E.I. JURY
.
A simplified Schur–Cohn test.
IEEE Trans.
,
157 
163

10)

B.D.O. ANDERSON ,
E.I. JURY ,
M. MANSOUR
.
Schwarz matrix properties for continuous and discrete time systems.
Int. J. Control
,
1 
16

11)

Y. BISTRITZ
.
Zero location with respect to the unit circle of discretetime linear system polynomials.
Proc. IEEE.
,
1131 
1142

12)

H. LEVARI ,
Y. BISTRITZ ,
T. KAILATH
.
Generalized Bezoutians and families of efficient zerolocation procedures.
IEEE Trans.
,
170 
186

13)

X. HU ,
E.I. JURY
.
On twodimensional filter stability test.
IEEE Trans.
,
7 ,
457 
462

14)

D.D. SILJAK
.
Stability criteria for twodimensional polynomials.
IEEE Trans.
,
185 
189

15)

K. PREMARATNE ,
E.I. JURY
.
On the Bistritz tabular form and its relationship with the Schur–Cohn minors and inner determinants.
J. Franklin Inst.
,
165 
182

16)

E.I. Jury
.
(1964)
, Theory and application of the .

17)

E.I. JURY
.
Modified stability table for 2D digital filters.
IEEE Trans.
,
116 
119

18)

K. PREMARATNE ,
E.I. JURY
.
Tabular method for determining root distribution of deltaoperator formulated real polynomials.
IEEE Trans.
,
352 
355

19)

H. FAN
.
Efficient zero location tests for deltaoperatorbased polynomials.
IEEE Trans.
,
5 ,
722 
727

20)

H. FAN
.
A normalized Schur–Cohn stability test for deltaoperator based polynomials.
IEEE Trans.
,
1606 
1612

21)

MANSOUR, M., KRAUS, F.J., JURY, E.I.: `On robust stability of discretetime systems using deltaoperators', Proc. 1992 Auto. Cont. Conf., ACC'92, 1992, Chicago, IL, USA.

22)

M. MANSOUR
.
(1993)
Stability and robust stability of discretetime systems in the δtransform, Fundamentals of discretetime systems: A tribute to Professor Eliahu I. Jury.

23)

REDDY, H.C., MOSCHYTZ, G.S., STUBERRUD, A.R.: `All pass function based stability test for deltaoperator formulated discretetime systems', Proc. 1995 IEEE Int. Symp. Circ. Syst., ISCAS'95, 1995, Seattle, WA, USA.

24)

T.S. HUANG
.
Stability of twodimensional recursive filters.
IEEE Trans.
,
158 
183

25)

E.I. JURY
.
(1986)
Stability of multidimensional systems and related problems, Multidimensional systems, techniques, and applications.

26)

Y. BISTRITZ
.
Stability testing of twodimensional discrete linear system polynomials by a twodimensional tabular form.
IEEE Trans.
,
6 ,
666 
676

27)

PREMARATNE, K.: `The equivalents of Schur–Colm minors for deltaoperator formulated discretetime systems', Proc. 1993 Pacific Rim Conf. Comm., Comp., Sig. Proc., PacRim'93, 1993, Victoria, BC, Canada.

28)

K. PREMARATNE ,
A.S. BOUJARWAH
.
An algorithm for stability determination of twodimensional deltaoperator formulated discretetime systems.
Multidimens. Syst. Signal Process
,
287 
312

29)

N.K. BOSE
.
Implementation of a new stability test for twodimensional filters.
IEEE Trans.
,
117 
120

30)

K. PREMARATNE ,
E.I. JURY
.
Application of polynomial array method to discretetime system stability.
IEE Proc. D.
,
198 
204

31)

TOUSET, S.: `A tabular algorithm for stability determination of deltaoperator formulated discretetime systems', 1998, MS Thesis, Univ. Miami, Dept. Elect. Comp. Eng., USA.
http://iet.metastore.ingenta.com/content/journals/10.1049/ipcta_20000144
Related content
content/journals/10.1049/ipcta_20000144
pub_keyword,iet_inspecKeyword,pub_concept
6
6