Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Incremental polynomial model-controller network: a self-organising nonlinear controller

Incremental polynomial model-controller network: a self-organising nonlinear controller

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An `incremental polynomial model-controller network' (IPMCN) is introduced. Smooth control switching is obtained from the use of odd polynomial controllers. The decomposition of the operating space, together with the construction of the network, is achieved on-line while controlling the system. The performance and robustness of this scheme are illustrated through various simulations.

References

    1. 1)
      • GAWTHROP, P.J., RONCO, E.: `Local model networks and self-tuning predictive control', IEEE Mediterranean symposium on New Directions in Control and Automation, 1996, Melerne Beach, Crete.
    2. 2)
      • G.H. GOLUB , C.F. VAN LOAN . (1989) , Matrix Computations.
    3. 3)
      • J.S. SHAMMA , M. ATHANS . Gain scheduling: potential hazards and possible remedies. IEEE Control. Syst. Mag. , 3 , 101 - 107
    4. 4)
      • H. UNBEHAUEN , G.P. RAO . (1987) , Identification of continuous systems.
    5. 5)
      • A.S. MORSE , D.Q. MAYNE , G.C. GOODWIN . Applications of hysteresis switching in parameter adaptive control. IEEE Trans. , 9 , 1343 - 1354
    6. 6)
      • K.S. NARENDRA , J. BALAKRISHNAN , M.K. CILIZ . Adaptation and learning using multiple models switching and tuning. IEEE Control. Syst. Mag. , 3 , 37 - 51
    7. 7)
      • RONCO, E.: `Incremental polynomial controller networks: two self-organising non-linear controllers', 1997, PhD thesis, Faculty of Mechanical Engineering, University of Glasgow, (available at http://www.ee.usyd.edu.au/~ericr/pub).
    8. 8)
      • S.R. WELLER , G.C. GOODWIN . Hysteresis switching adaptive control of linear multivariable systems. IEEE Trans. , 7 , 1360 - 1375
    9. 9)
      • T.A. JOHANSEN , B.A. FOSS . A narmax model representation for adaptive control based on local model. Model. Identif. Control. , 1 , 25 - 39
    10. 10)
      • RONCO, E., GAWTHROP, P.J.: `Incremental polynomial model-controller network: a self organising non-linear controller', Technical report CSC-97011, 1997, (Draft available at http://www.ee.usyd.edu.au/~ericr/pub).
    11. 11)
      • P.C. YOUNG . Parameter estimation for continuous-time models: a survey. Automatica , 1 , 23 - 39
    12. 12)
      • BILLINGS , CHEN . Orthogonal least-squares methods and their application to non-linear system-identification. Int. J. Control , 1873 - 1896
    13. 13)
      • K.S. NARENDRA , J. BALAKRISHAN . Adaptive control using multiple models. IEEE Trans. , 2 , 171 - 187
    14. 14)
      • J.S. SHAMMA , M. ATHANS . Analysis of gain scheduled control for nonlinear plants. IEEE Trans. , 898 - 907
    15. 15)
      • T.A. JOHANSEN , B.A. FOSS . Constructing NARMAX models using ARMAX models. Int. J. Control. , 1125 - 1153
    16. 16)
      • R.H. MIDDLETON , G.C. GOODWIN , D.J. HILL , D.Q. MAYNE . Design issues in adaptive control. IEEE Trans. , 1 , 50 - 58
    17. 17)
      • T. POGGIO , F. GIROSI . Networks for approximation and learning. Proc. IEEE , 1481 - 1497
    18. 18)
      • RONCO, E., GAWTHROP, P.J.: `Incremental model reference adaptive polynomial controllers network', Proceedings of the IEEE conference on Decision and Control (CDC'97), 1997, (draft available at http://www.ee.usyd.edu.au/~ericr/pub).
    19. 19)
      • D. LEITH , W.E. LEITHEAD . An analytic framework for blended multiple model systems using linear local models. Int. J. Control , 7 , 605 - 619
    20. 20)
      • A.S. MORSE . Toward a unified theory of parameter adaptive control-tunability. IEEE Trans. , 9 , 1002 - 1012
    21. 21)
      • G.A. CARPENTER , S. GROSSBERG . The art of adaptive pattern recognition by a self-organising neural network. IEEE Trans. Comput. , 3 , 77 - 88
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_19990720
Loading

Related content

content/journals/10.1049/ip-cta_19990720
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address