http://iet.metastore.ingenta.com
1887

LQG controllers for discrete-time multivariable systems with different transport delays in signal channels

LQG controllers for discrete-time multivariable systems with different transport delays in signal channels

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The design of stochastic LQG optimal tracking and regulating systems is considered for discrete-time systems with different time delays in different signal channels. A Wiener frequency domain solution for the closed-loop optimal controller is first obtained in the z-domain. This solution is physically realisable but involves the transport-delay operator. A state-space version of the controller is then derived from the frequency domain results. It is shown that the state equation based controller includes a Kalman predictor and state-estimate feedback. This confirms that a form of the separation principle holds for linear systems containing different transport delays on input and output signal channels. The Wiener solution applies to multivariable systems that may be unstable, nonminimum phase and nonsquare. The process and measuring system noise terms may be correlated and be coloured or white. It is shown that for certain classes of system the optimal controller can be implemented using a combination of finite dimensional and pure transport delay elements. The main advantage is that the estimator is of much lower order than the traditional solution. The gain computation involves a reduced state equal to that of the delay free system and is thereby independent of the length of the delay. The state-space form of the optimal controller may be implemented using either a finite impulse-response block, or alternatively in a Smith predictor form. In this latter case it has the same limitation, namely the plant must be open-loop stable. This restriction does not apply to either the Wiener or finite impulse response state space solutions.

References

    1. 1)
      • R.E. Kalman , R.S. Bucy . New results in linear filtering and prediction theory. J. Basic Eng. , 95 - 108
    2. 2)
      • D.L. KLEINMAN . Optimal control of linear systems with time-delay and observation noise. IEEE Trans. Autom. Control , 524 - 527
    3. 3)
      • O.J.M. Smith . A controller to overcome dead time. ISA J. , 2 , 28 - 33
    4. 4)
      • A.T. Fuller . Optimal nonlinear control of systems with pure delay. Int. J. Control , 2 , 145 - 168
    5. 5)
      • Marinescu, B., Bourles, H.: `Robust predictive control for multi-input/output controlsystems with non-equal time delays', European Control conference, 1997, Brussels.
    6. 6)
      • M.J. Grimble . Solution of the stochastic optimal control problem in the s-domain forsystems with time delay. IEE Proc. , 7 , 697 - 704
    7. 7)
      • Grimble, M.J., Hearns, G.: `State-space LQG controllers for continuous-timesystems with pure transport delays with application to hot strip mills', 134, ICC report, 1997.
    8. 8)
      • M.J. Grimble . Solution of the discrete-time stochastic optimal control problem in thez-domain. Int. J. Syst. Sci. , 12 , 1369 - 1390
    9. 9)
      • M.J. Grimble . Definition of a complex domain adjoint for use in optimal control problems. J. Inst. Meas. Control , 33 - 35
    10. 10)
      • M.J. Grimble . (1994) Robust industrial control: a polynomial approach for optimal systems.
    11. 11)
      • W.R. LePage . (1980) Complex variables and the Laplace transform for engineers.
    12. 12)
      • J.E. Marshall . Extension of O.J. Smith's method to digital and other systems. Int. J. Control , 5 , 933 - 939
    13. 13)
      • K.J. Åström . Frequency domain properties of Otto Smith regulators. Int. J. Control , 2 , 307 - 314
    14. 14)
      • U. Shaked . A general transfer-function approach to linear stationary filtering andsteady-state optimal control problems. Int. J. Control , 6 , 741 - 770
    15. 15)
      • U. Shaked . A general transfer function approach to the steady-state linear quadraticGaussian stochastic control problem. Int. J. Control , 6 , 771 - 800
    16. 16)
      • M.G. Strintzis . A solution to the matrix factorization problem. IEEE Trans. Inf. Theory , 2 , 225 - 232
    17. 17)
      • M.J. Grimble . The design of stochastic optimal feedback control systems. IEE Proc. , 11 , 1275 - 1284
    18. 18)
      • M.H.A. Davis . (1977) Linear estimation and stochastic control.
    19. 19)
      • R.E. Schmotzer , G.L. Blankenship . A simple proof of the separation theorem forlinear stochastic systems with time delays. IEEE Trans. Autom. Control , 4 , 734 - 735
    20. 20)
      • J.E. Normey-Rico , C. Bordons , E.F. Camacho . Improving the robustness of dead-time compensating PI controllers. Control Eng. Pract. , 6 , 801 - 810
    21. 21)
      • M.J. Grimble , M.A. Johnson . (1988) Optimal multivariable control and estimation theory, Parts 1 and 2.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_19982233
Loading

Related content

content/journals/10.1049/ip-cta_19982233
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address