http://iet.metastore.ingenta.com
1887

Digital redesign of cascaded analogue controllers for sampled-data interval systems

Digital redesign of cascaded analogue controllers for sampled-data interval systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper presents a new method for the digital redesign of cascaded analogue controllers for continuous-time parametric interval systems. The bilinear and inverse-bilinear approximation method is developed to carry out discretisation of the predesigned cascaded analogue controller, taking into account intersample behaviour and implementation errors. A dual concept of the proposed digital redesign method is utilised to construct a new pseudodigital observer such that the estimated states of the digitally redesigned digital observer closely match those of the original continuous-time observer at the sampling instants. Using the newly digitally redesigned observer based controllers, the resulting dynamic states of the digitally controlled cascaded sampled-data interval systems are able to closely match those of the original analogously controlled cascaded continuous-time parametric interval systems.

References

    1. 1)
      • J. Ackermann , A. Barlett , D. Kaesbauer , W. Sienel , R. Steinhouser . (1993) Robust control systems with uncertain physical parameters.
    2. 2)
      • B.R. Barmish . (1994) New tools for robustness of linear systems.
    3. 3)
      • S.P. Bhattacharyya , H. Chapellat , L.H. Keel . (1995) Robust control — the parametric approach.
    4. 4)
      • F.L. Lewis . (1992) Applied optimal control and estimation: digital design and implementation.
    5. 5)
      • B.C. Kuo . (1980) Digital control systems.
    6. 6)
      • K.S. Rattan . Compensating for computational delay in digital equivalent of continuouscontrol systems. IEEE Trans. , 895 - 899
    7. 7)
      • L.S. Shieh , Y.F. Chang , R.E. Yates . A dominant-data matching method for digitalcontrol systems modeling and design. IEEE Trans. , 390 - 396
    8. 8)
      • J.P. Keller , B.D.O. Anderson . A new approach to the discretization of continuous-timecontrollers. IEEE Trans. , 49 - 57
    9. 9)
      • L.S. Shieh , J.L. Zhang , J.W. Sunkel . A new approach to the digital redesign ofcontinuous-time controllers. Contr. Theory Adv. Technol. , 38 - 57
    10. 10)
      • L.S. Shieh , J.L. Zhang , N.P. Coleman . Optimal digital redesign of continuous-time controllers. Comp. Math. Appl. , 25 - 35
    11. 11)
      • L.S. Shieh , B.B. Decrocq , J.L. Zhang . Optimal digital redesign of cascaded analoguecontrollers. Opt. Contr. Appl. Methods , 205 - 219
    12. 12)
      • A.H.D. Markazi , N. Hori . Discretisation of continuous-time control systems withguaranteed stability. IEE Proc. D, Control Theory Appl. (UK) , 323 - 328
    13. 13)
      • T. Chen , B.A. Francis . H2-optimal sampled-data control. IEEE Trans. , 387 - 397
    14. 14)
      • B.R. Barmish , B.J. Pearson , B.A. Francis , A. Tannenbaum . A lifting techniquefor linear periodic systems with applications to sampled-data control. Syst. Contr. Lett , 79 - 88
    15. 15)
      • P.T. KABAMBA , S. HARA . Worst-case analysis and design of sampled-data control systems. IEEE Trans. , 1337 - 1357
    16. 16)
      • T. Chen , L. Qiu . H∞ design of general multirate sampled-data controlsystems. Automatica , 1139 - 1152
    17. 17)
      • T. Chen , B.A. Francis . (1995) Optimal sampled-data control system.
    18. 18)
      • L.S. Shieh , W.M. Wang , J.S.H. Tsai . Digital modelling and digital redesign ofsampled-data uncertain systems. IEE Proc. D, Control Theory Appl. (UK) , 6 , 585 - 594
    19. 19)
      • K.K. Yen , S.F. Zhou , Z. Qu . A sufficient condition for robust stabilization of intervalplants using generalized compensators. Comp. Elect. Eng. , 1 , 13 - 20
    20. 20)
      • L.V. Kolev . (1993) Interval methods for circuit analysis.
    21. 21)
      • R.E. Moore . (1966) Interval analysis.
    22. 22)
      • A. Deif . (1986) Sensitivity analysis in linear systems.
    23. 23)
      • B. Noble , J.W. Danial . (1977) Applied linear algebra.
    24. 24)
      • J. Ezzine . Robust stability bounds for sampled-data systems. Int. J. Syst. Sci. , 1951 - 1966
    25. 25)
      • L.S. Shieh , J. Gu , Y.L. Bao . Model conversions of uncertain linear systems using thePade and inverse-Pade method. IEE Proc. D, Control Theory Appl. (UK) , 455 - 464
    26. 26)
      • R. Kondo , K. Furuta . On the bilinear transformation of Riccati equations. IEEE Trans. , 50 - 54
    27. 27)
      • L.S. Shieh , X. Zou , N.P. Coleman . Digital interval model conversion and simulationof continuous-time uncertain systems. IEE Proc. D, Control Theory Appl. (UK) , 315 - 322
    28. 28)
      • R. Bellman . (1970) Introduction to matrix analysis.
    29. 29)
      • Mansour, M.: `Robust stability of interval matrices', IEEE Proceedings of the conference on Decision and control, 1989, Tampa, FL, p. 46–51.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_19960820
Loading

Related content

content/journals/10.1049/ip-cta_19960820
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address