http://iet.metastore.ingenta.com
1887

Iterative learning control for discrete-time systems with exponential rate of convergence

Iterative learning control for discrete-time systems with exponential rate of convergence

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An algorithm for iterative learning control is proposed based on an optimisation principle used by other authors to derive gradient-type algorithms. The new algorithm is a descent algorithm and has potential benefits which include realisation in terms of Riccati feedback and feedforward components. This realisation also has the advantage of implicitly ensuring automatic step-size selection and hence guaranteeing convergence without the need for empirical choice of parameters. The algorithm achieves a geometric rate of convergence for invertible plants. One important feature of the proposed algorithm is the dependence of the speed of convergence on weight parameters appearing in the norms of the signals chosen for the optimisation problem.

References

    1. 1)
      • Arimoto, S., Kawamura, S., Miyazaki, F.: `Bettering operation of dynamic systems by learning: a new control theoryfor servomechanismor mechatronic systems', Proceedings of 23rd IEEE conference on Decision and control, 1984, Las Vegas, USA, p. 1064–1069.
    2. 2)
      • Buchheit, K., Pandit, M., Befort, M.: `Optimal iterative learning control of an extrusion plant', Proceedings of IEE international conference, Control '94, 1994, Coventry, p. 652–657.
    3. 3)
      • Furuta, K., Yamakita, M.: `The design of a learning control system for multivariable systems', Proceedings of IEEE international symposium on Intelligentcontrol, 1987, Philadelphia, USA, p. 371–376.
    4. 4)
      • Z. Geng , R. Carroll , J. Xie . Two-dimensional model and algorithm analysis for a class of iterative learning control systems. Int. J. Control , 4 , 833 - 862
    5. 5)
      • D.-H. Hwang , Z. Bien , S.-R. Oh . Iterative learning control method for discrete-time dynamic systems. IEE Proc. D , 2 , 139 - 144
    6. 6)
      • T. Ishihara , K. Abe , H. Takeda . A discrete-time design of robust iterative learning controllers. IEEE Trans. , 1 , 74 - 84
    7. 7)
      • Lucibello, P.: `Inversion of linear square systems by learning', Proceedings of 30th conference on Decision and control, 1991, Brighton, United Kingdom, p. 859–864.
    8. 8)
      • K.L. Moore . (1993) Iterative learning control for deterministic systems, Advances in Industrial Control Series.
    9. 9)
      • Owens, D.H.: `Iterative learning control: convergence using high gain feedback', Proceedings of 31st IEEE conference on Decision and control, 1992, Tucson, USA, p. 2545–2546.
    10. 10)
      • Owens, D.H.: `2D systems theory and iterative learning control', Proceedings of 2nd European Control conference, 1993, Groningen, Netherlands, p. 1506–1509.
    11. 11)
      • T. Sugie , T. Ono . An iterative learning control law for dynamical systems. Automatica , 4 , 729 - 732
    12. 12)
      • E. Rogers , D.H. Owens . (1992) Stability analysis for linear repetitive processes, Lecture notes in control and information sciences, vol. 175.
    13. 13)
      • N. Amann , D.H. Owens , E. Rogers . Iterative learning control using optimal feedback and feedforward actions. Int. J. Control
    14. 14)
      • K.J. Åström , B. Wittenmark . (1997) Computer controlled systems.
    15. 15)
      • T. Kailath . (1980) Linear systems.
    16. 16)
      • D.J. Bell , D.H. Jacobsen . (1975) Singular optimal control problems.
    17. 17)
      • J.S. Willems , A. Kitapçi , L.M. Silverman . Singular optimal control: a geometric approach. SIAM J. Control Optim. , 2 , 323 - 337
    18. 18)
      • D.G. Luenberger . (1969) Optimization by vector space methods.
    19. 19)
      • D.W. Marquardt . An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. , 2 , 431 - 441
    20. 20)
      • W.H. Press , S.A. Teukolsky , W.T. Vetterling , B.P. Flannery . (1992) Numerical recipes in C. The art of computing.
    21. 21)
      • M. Athans , P.L. Falb . (1966) Optimal control.
    22. 22)
      • B.D.O. Anderson , J.B. Moore . (1989) Optimal control — linear optimal control.
    23. 23)
      • Amann, N., Owens, D.H.: `Non-minimum phase plants in iterative learning control', Proceedings of 2nd international conference on Intelligentsystems engineering, 1994, Hamburg–Harburg, p. 107–112.
    24. 24)
      • W.M. Wonham . (1979) Linear multivariable control: a geometric approach, Application of mathematics, vol. 10.
    25. 25)
      • L.M. Silverman . Inversion of multivariable linear systems. IEEE Trans. , 3 , 270 - 276
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cta_19960244
Loading

Related content

content/journals/10.1049/ip-cta_19960244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address