Sampling-time effects of higher-order digitisations and their applications in digital redesign

Sampling-time effects of higher-order digitisations and their applications in digital redesign

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IEE Proceedings - Control Theory and Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A study is made of the sampling-time effects of higher-order digitisations (i.e. the Madwed and Boxer-Thaler digitisations) to convert a continuous-time system into a discrete-time system. A general expression for the denominator and numerator of the digitised system is proposed, and used to predict precisely the computational stability and sampling-time effects of these types of digitisation. The 'polynomial root locus' is introduced to describe the pole variations of the digitised system when the sampling time is varied from zero to infinity. The maximum sampling time of a particular digitisation can also be found by a new algorithm which is proposed. The transient behaviour of the digitised system is further studied by defining a new set of transient terms for discrete-time systems. In this way, the effects of sampling-time can be studied thoroughly. It is shown that the appropriate sampling times obtained via these approximate methods play a meaningful role in selecting appropriate sampling times for real problems. Several examples are illustrated.

Related content

This is a required field
Please enter a valid email address