Design of an adaptive PI rate controller for streaming media traffic based on gain and phase margins

Access Full Text

Design of an adaptive PI rate controller for streaming media traffic based on gain and phase margins

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Communications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An adaptive proportional-integral (PI) rate controller for best-effort streaming media traffic in the Internet is proposed. Classical control theory is employed in the control design, which allows the user to achieve good performance of active queue management (AQM) in the router by specifying the proper gain and phase margins. The proposed adaptive PI rate controller will self-tune only when the number of active controlled source nodes changes or the average round trip time becomes longer. The adaptive PI rate controller located in the router can calculate the advertised source transmission rate for the streaming media traffic based on the instantaneous queue length of the buffer, which clamps the steady value of the queue length around the target buffer occupancy. Every controlled source node always transmits streaming media traffic through IP packets into the network at the maximum allowed transmission rate, thus providing the best-effort service traffic and maximising the bandwidth utilisation of the Internet. Our OPNET simulations demonstrate that the rate-based AQM control system can adapt to the fluctuation of the uncontrolled guaranteed traffic very well, thus providing the network with good stability robustness.

Inspec keywords: queueing theory; Internet; computer network management; media streaming; telecommunication services; telecommunication control; telecommunication network routing; PI control; adaptive control; telecommunication traffic; IP networks

Other keywords: adaptive proportional-integral rate controller; Internet; stability; best-effort service traffic; round trip time; source transmission; AQM; IP packet; control theory; maximum transmission rate; active queue management; OPNET simulation; media streaming traffic; network router

Subjects: Computer communications; Control applications in data transmission; Multimedia communications; Network management; Multimedia; Self-adjusting control systems; Communication network design, planning and routing; Other computer networks; Queueing systems; Queueing theory; Queueing theory

References

    1. 1)
      • Low, S.H., Andrew, L.L.H., Wydrowski, B.P.: `Understanding XCP: equilibrium and fairness', Proc. of IEEE INFOCOM, March 2005.
    2. 2)
    3. 3)
      • `TCP friendly rate control (TFRC): protocol specification', RFC 3448, January 2003, Hanley, M., Floyd, S., Padhye, J., Widmer, J.:.
    4. 4)
      • Zhang, H.Y., Cong, J., Yang, O.W.W.: `Rate control over RED with data loss and varying delays', Proc. of IEEE/Globecom, 2003, p. 3035–3040.
    5. 5)
      • Floyd, S., Hanley, M., Padhye, J., Widmer, J.: `Equation-based congestion control for unicast applications', Proc. of ACM SIGCOMM, 2000, p. 43–56.
    6. 6)
      • A. Kolarov , G. Ramamurthy . A control-theory approach to the design of an explicit rate controller for ABR services. IEEE/ACM Trans. Netw. , 5 , 741 - 753
    7. 7)
      • S. Karandikar , S. Kalyanaraman , P. Bagal , B. Packer . TCP rate control. ACM Comput. Commun. Rev. , 1 , 45 - 58
    8. 8)
      • Rejaie, R., Handley, M., Estrin, D.: `RAP: An end-to-end rate-based congestion control mechanism for real-time streams in the internet', Proc. of IEEE INFOCOM, March 1999.
    9. 9)
      • W.K. Ho , T.H. Lee , H.P. Han , Y. Hong . Self-tuning IMC-PID control with Interval gain and phase margin assignment. IEEE Trans. Control Syst. Technol. , 3 , 535 - 541
    10. 10)
      • Katabi, D., Handley, M., Rohrs, C.: `Congestion control for high bandwidth delay product networks', Proc. of ACM SIGCOMM, August 2002.
    11. 11)
      • K. Ogata . (1997) Modern control engineering.
    12. 12)
    13. 13)
    14. 14)
      • Hollot, C.V., Misra, V., Towsley, D., Gong, W.B.: `A control theoretic analysis of RED', Proc. of IEEE/INFOCOM, 2001, p. 1510–1519.
    15. 15)
    16. 16)
      • K.J. Astrom , T. Hagglund . (1995) PID controllers: theory, design, and tuning.
    17. 17)
      • S. Floyd , K. Fall . Promoting the use of end-to-end congestion control in the internet. IEEE/ACM Trans. Netw. , 4 , 458 - 472
    18. 18)
      • Huang, C., Xu, L.H.: `SRC: stable rate control for streaming media', Proc. of IEEE Globecom, December 2003, San Francisco, USA.
    19. 19)
      • F. Blanchini , R. Lo Cigno , R. Tempo . Robust rate control for integrated services packet networks. IEEE/ACM Trans. Netw. , 5 , 644 - 652
    20. 20)
      • K.J. Astrom , T. Hagglund , C.C. Hang , W.K. Ho . Automatic tuning and adaptation for PID controllers-a survey. IFAC J. Control Eng. Pract. , 4 , 699 - 714
    21. 21)
      • K.J. Astrom , B. Wittenmark . (1995) Adaptive control.
    22. 22)
      • S. Floyd , V. Jacobson . Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. , 4 , 397 - 413
    23. 23)
      • Zhang, H.Y., Yang, O.W.W., Mouftah, H.: `Design of robust congestion controllers for ATM networks', Proc. of IEEE INFOCOM, 1997, p. 302–309.
    24. 24)
      • OPNET Technologies, Inc.: ‘OPNET Modeler Manuals’, OPNET Version 7.0, 2000.
    25. 25)
      • Hollot, C.V., Misra, V., Towsley, D., Gong, W.-B.: `On designing improved controllers for AQM routers supporting TCP flows', Proc. of IEEE/INFOCOM, 2001, p. 1726–1734.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-com_20045215
Loading

Related content

content/journals/10.1049/ip-com_20045215
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading