Defect tolerance in multiple-FPGA systems

Access Full Text

Defect tolerance in multiple-FPGA systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Computers and Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

SRAM-based field programmable gate arrays (FPGAs) have an inherent capacity for defect tolerance. A simple scheme that exploits this potential in multiple-FPGA systems is proposed. The symmetry of the system is exploited to yield a large number of possible mappings of bitstreams on FPGAs, which results in a high probability that at least one functional mapping exists. It is shown that the behaviour of a system built using a large number of defective FPGAs approaches that of the ideal defect-free system. Various interconnection topologies such as the tree, the crossbar and a hybrid form are compared.

Inspec keywords: field programmable gate arrays; fault tolerant computing; SRAM chips

Other keywords: defect tolerance; defective FPGA; field programmable gate array; interconnection topology; SRAM; multiple FPGA system; static random access memory; functional bitstream mapping; defect free system

Subjects: Logic circuits; Performance evaluation and testing; Memory circuits; Semiconductor storage; Logic and switching circuits

References

    1. 1)
      • C. Chang , J. Wawrzynek , R.W. Brodersen . Bee2: a high-end reconfigurable computing system. IEEE Des. Test Comput. , 2 , 114 - 125
    2. 2)
      • Lane, C., Zaveri, K., Yi, H., Powell, G., Leventis, P., Jefferson, D., Lewis, D., Nguyen, T., Santurkar, V., Chan, M., Lee, A., Johnson, B., Cashman, D.: `Programmable logic device with redundant circuitry', US, 6965249, November 2005.
    3. 3)
      • Wells, R.W., Ling, Z., Patrie, R.D., Tong, V.L., Cho, J., Toutounchi, S.: `Application-specific testing methods for programmable logic devices', US, 6891395, October 2004.
    4. 4)
      • A. Doumar , S. Kaneko , H. Ito . Defect and fault tolerance FPGAS by shifting the configuration data. Proc. Defect and Fault Tolerance
    5. 5)
      • Das, D., Touba, N.A.: `A low cost approach for detecting, locating, and avoiding interconnect faults in FPGA-based reconfigurable systems', Proc. IEEE Int. Conf. on VLSI Design, 1999.
    6. 6)
      • T.H. Cormen , C.E. Leiserson , R.L. Rivest , C. Stein . (2001) Introduction to Algorithms.
    7. 7)
      • Abramovici, M., Stroud, C., Hamilton, C., Wijesuriga, S., Verma, V.: `Using roving star's for on-line testing and diagnosis for FPGAS in fault tolerant applications', Proc. Int. Test Conf., 1999.
    8. 8)
      • M. Renovell , J.M. Portal , J. Figueras , Y. Zorian . Testing the interconnect of ram-based FPGAS. IEEE Des. Test Comput. , 4 , 89 - 92
    9. 9)
      • M.B. Tahoori . Application-dependent testing of FPGA interconnect. Proc. Defect and Fault Tolerance
    10. 10)
      • B. Bollobás . (2001) Random graphs.
    11. 11)
      • Hatori, F.: `Introducing redundancy in field programmable gate arrays', Proc. IEEE Custom Integrated Circuits Conf., 1993.
    12. 12)
      • Inoue, T., Fujiwara, H., Michinishi, H., Yokohira, T., Okamoto, T.: `Universal test complexity for field-programmable gate arrays', Proc. Asian Test Symp., 1995.
    13. 13)
      • J.A. Cunningham . The use and evaluation of yield models in integrated circuit manufacturing. IEEE Trans. Semicond. Manuf. , 3 , 422 - 429
    14. 14)
      • F. Hanchek , S. Dutt . Methodologies for tolerating cell and interconnect faults in FPGAS. IEEE Trans. Comput. , 1 , 15 - 33
    15. 15)
      • W.B. Culbertson , R. Amerson , R.J. Carter , P. Kuekes , G. Snider . Defect tolerance on the teramac custom computer. Proc. FPGAs for Custom Computing Machines
    16. 16)
      • Tahoori, M.B.: `Using satisfiability in application-dependent testing of FPGA interconnects', Proc. Design and Automation Conf., 2003.
    17. 17)
      • W.K. Huang , M.Y. Zhang , F.J. Meyer , F. Lombardi . A XOR-tree based technique for constant testability of configurable FPGAS. Proc. Asian Test Symp.
    18. 18)
      • Dutt, S., Shanmugavel, V., Trimberger, S.: `Efficient incremental rerouting for fault reconfiguration in field programmable gate arrays', Proc. Int. Conf. on Computer Aided Design, 1999.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cdt_20050179
Loading

Related content

content/journals/10.1049/ip-cdt_20050179
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading