http://iet.metastore.ingenta.com
1887

CAD tools for embedded analogue circuits in mixed-signal integrated systems on chip

CAD tools for embedded analogue circuits in mixed-signal integrated systems on chip

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Computers and Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The paper gives an overview of methods and tools that are needed to design and embed analogue and RF blocks in mixed-signal integrated systems on chip (SoC). The design of these SoCs is characterised by growing design complexities and shortening time to market constraints. This requires new mixed-signal design methodologies and flows, including high-level architectural explorations and techniques for analogue behavioural modelling. This also calls for new methods to increase analogue design productivity, such as the reuse of analogue blocks as well as the adoption of analogue and RF circuit and layout synthesis tools. Also, more detailed modelling and verification tools are needed that can analyse signal integrity and crosstalk problems, especially noise coupling problems caused by the embedding of the analogue circuits in a digital environment. Solutions that already exist today are presented, and challenges that still remain to be solved are outlined.

References

    1. 1)
      • International Technology Roadmap for Semiconductors 2003, http://public.itrs.net.
    2. 2)
    3. 3)
    4. 4)
      • G. Gielen . Top-down design of mixed-mode systems: challenges and solutions.
    5. 5)
      • The MEDEA+ Design Automation Roadmap 2003, http://www.medea.org.
    6. 6)
      • Donnay, S., Gielen, G., Sansen, W.: `High-level analogue/digital partitioning in low-power signal processing applications.', Proc. 7th Int. Workshop on Power and Timing Modelling, Optimization and Simulation (PATMOS), 1997, p. 47–56.
    7. 7)
      • Crols, J., Donnay, S., Steyaert, M., Gielen, G.: `A high-level design and optimization tool for analogue RF receiver front-ends', Proc. Int. Conf. on Computer-Aided Design (ICCAD), 1995, p. 550–553.
    8. 8)
      • P. Wambacq , G. Vandersteen , Y. Rolain , P. Dobrovolny , M. Goffioul , S. Donnay . Dataflow simulation of mixed-signal communication circuits using a local multirate, multicarrier signal representation. IEEE Trans. Circuits Syst., I, Fundam. Theory Appl , 11 , 1554 - 1562
    9. 9)
      • Vandersteen, G.: `Efficient bit-error-rate estimation of multicarrier transceivers.', Proc. Design, Automation and Test in Europe (DATE) Conf., 2001, p. 164–168.
    10. 10)
      • Wambacq, P., Vandersteen, G., Donnay, S., Engels, M., Bolsens, I., Lauwers, E., Vanassche, P., Gielen, G.: `High-level simulation and power modelling of mixed-signal front-ends for digital telecommunications', Proc. Int. Conf. on Electronics, Circuits and Systems (ICECS), 1999, p. 525–528.
    11. 11)
      • Virtual Socket Interface Alliance, several documents including VSIA Architecture Document and Analogue/Mixed-Signal Extension Document, http://www.vsia.org.
    12. 12)
    13. 13)
      • E. Christen , K. Bakalar . VHDL-AMS - a hardware description language for analogue and mixed-signal applications. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , 10 , 1263 - 1272
    14. 14)
      • IEEE 1076.1 Working Group, ‘Analogue and mixed-signal extensions to VHDL’, http://www.eda.org/vhdl-ams/.
    15. 15)
      • K. Kundert , O. Zinke . (2004) The designer's guide to Verilog-AMS.
    16. 16)
      • Verilog-AMS Language Reference Manual, version 2.1, http://www.eda.org/verilog-ams/.
    17. 17)
      • Antao, B., El-Turky, F.: `Automatic analogue model generation for behavioural simulation', Proc. IEEE Custom Integrated Circuits Conf. (CICC), May 1992, p. 12.2.1–12.2.4.
    18. 18)
      • Borchers, C., Hedrich, L., Barke, E.: `Equation-based behavioural model generation for nonlinear analogue circuits', Proc. IEEE/ACM Design Automation Conf. (DAC), 1996, p. 236–239.
    19. 19)
      • L. Pillage , R. Rohrer . Asymptotic waveform evaluation for timing analysis. IEEE Trans. Comput.-Aided Des. , 4 , 352 - 366
    20. 20)
      • Silveira, L.: `A coordinate-transformed Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC circuits', Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), 1996, p. 288–294.
    21. 21)
      • A. Odabasioglu , M. Celik , L. Pileggi . PRIMA: passive reduced-order interconnect macromodeling algorithm. IEEE Trans. Comput.-Aided Des. , 8 , 645 - 654
    22. 22)
    23. 23)
    24. 24)
      • Peng, L., Pileggi, L.: `NORM: compact model order reduction of weakly nonlinear systems', Proc. Design Automation Conf., June 2003, p. 472–477.
    25. 25)
      • M. Rewienski , J. White . A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput.-Aided Des. , 2 , 155 - 170
    26. 26)
      • Dong, N., Roychowdhury, J.: `Piecewise polynomial nonlinear model reduction', Proc. Design Automation Conf., June 2003, p. 484–489.
    27. 27)
      • W. Daems , G. Gielen , W. Sansen . Simulation-based generation of posynomial performance models for the sizing of analogue integrated circuits. IEEE Trans. Comput.-Aided Des. , 5 , 517 - 534
    28. 28)
      • Kiely, Th., Gielen, G.: `Performance modelling of analogue integrated circuits using least-squares support vector machines', Proc. Design, Automation and Test in Europe (DATE) Conf., February 2004, p. 448–453.
    29. 29)
      • Liu, H., Singhee, A., Rutenbar, R., Carley, L.R.: `Remembrance of circuits past: macromodeling by data mining in large analogue design spaces', Proc. Design Automation Conf., June 2002, p. 437–442.
    30. 30)
      • E. Lauwers , G. Gielen . Power estimation methods for analogue circuits for architectural exploration of integrated systems. IEEE Trans. Very Large Scale Integr. Syst. , 2 , 155 - 162
    31. 31)
      • De Bernardinis, F., Jordan, M., Sangiovanni-Vincentelli, A.: `Support vector machines for analogue circuit performance representation', Proc. Design Automation Conf. (DAC), June 2003, p. 964–969.
    32. 32)
      • Veselinovic, P.: `A flexible topology selection program as part of an analogue synthesis system', Proceedings IEEE European Design & Test Conf. (ED&TC), 1995, p. 119–123.
    33. 33)
      • R. Harjani , J. Shao . Feasibility and performance region modelling of analogue and digital circuits. Analog Integr. Circuits Signal Process , 1 , 23 - 43
    34. 34)
      • R. Harjani , R. Rutenbar , L.R. Carley . OASYS: a framework for analogue circuit synthesis. IEEE Trans. Comput.-Aided Des. , 12 , 1247 - 1265
    35. 35)
      • F. El-Turky , E. Perry . BLADES: an artificial intelligence approach to analogue circuit design. IEEE Trans. Comput.-Aided Des. , 6 , 680 - 691
    36. 36)
      • H. Koh , C. Séquin , P. Gray . OPASYN: a compiler for CMOS operational amplifiers. IEEE Trans. Comput.-Aided Des. , 2 , 113 - 125
    37. 37)
      • P. Maulik , L.R. Carley , R. Rutenbar . Simultaneous topology selection and sizing of cell-level analogue circuits. IEEE Trans. Comput.-Aided Des. , 4 , 401 - 412
    38. 38)
      • Ning, Z.: `SEAS: a simulated evolution approach for analogue circuit synthesis.', Proc. IEEE Custom Integrated Circuits Conf. (CICC), 1991, p. 521–524.
    39. 39)
      • Kruiskamp, W., Leenaerts, D.: `DARWIN: CMOS opamp synthesis by means of a genetic algorithm', Proc. ACM/IEEE Design Automation Conf. (DAC), 1995, p. 550–553.
    40. 40)
    41. 41)
      • J. Harvey , M. Elmasry , B. Leung . STAIC: an interactive framework for synthesizing CMOS and BiCMOS analogue circuits. IEEE Trans. Comput.-Aided Des. , 11 , 1402 - 1416
    42. 42)
    43. 43)
    44. 44)
      • Swings, K., Sansen, W.: `DONALD: a workbench for interactive design space exploration and sizing of analogue circuits', Proc. IEEE Eur. Design Automation Conf. (EDAC), 1991, p. 475–479.
    45. 45)
      • K. Lampaert , G. Gielen , W. Sansen . (1999) Analogue layout generation for performance and manufacturability.
    46. 46)
    47. 47)
    48. 48)
      • A. Doboli , R. Vemuri . Exploration-based high-level synthesis of linear analogue systems operating at low/medium frequencies. IEEE Trans. Comput.-Aided Des. , 11 , 1556 - 1568
    49. 49)
      • M. Hershenson , S. Boyd , T. Lee . Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput.-Aided Des. , 1 , 1 - 21
    50. 50)
      • P. Mandal , V. Visvanathan . CMOS op-amp sizing using a geometric programming formulation. IEEE Trans. Comput.-Aided Des. , 1 , 22 - 38
    51. 51)
      • del Mar Hershenson, M.: `Design of pipeline analogue-to-digital converters via geometric programming', Proc. Int. Conf. on Computer-Aided Design (ICCAD), November 2002, p. 317–324.
    52. 52)
      • Vanderhaegen, J., Brodersen, R.: `Automated design of operational transconductance amplifiers using reversed geometric programming', Proc. Design Automation Conf. (DAC), June 2004, p. 133–138.
    53. 53)
      • S. Director , R. Rohrer . Automated network design - The frequency domain case. IEEE Trans. Circuit Theory , 5 , 330 - 337
    54. 54)
      • W. Nye , D. Riley , A. Sangiovanni-Vincentelli , A. Tits . DELIGHT.SPICE: an optimization-based system for the design of integrated circuits. IEEE Trans. Comput.-Aided Des. , 4 , 501 - 518
    55. 55)
      • Medeiro, F.: `A statistical optimization-based approach for automated sizing of analogue cells', Proc. ACM/IEEE Int. Conf. on Computer-Aided Design (ICCAD), 1994, p. 594–597.
    56. 56)
    57. 57)
      • Phelps, R., Krasnicki, M., Rutenbar, R., Carley, L.R., Hellums, J.: `A case study of synthesis for industrial-scale analogue IP: redesign of the equalizer/filter front-end for an ADSL CODEC', Proc. ACM/IEEE Design Automation Conf. (DAC), 2000, p. 1–6.
    58. 58)
      • K. Francken , G. Gielen . A high-level simulation and synthesis environment for delta-sigma modulators. IEEE Trans. Comput.-Aided Des. , 8 , 1049 - 1061
    59. 59)
    60. 60)
      • G. Gielen , K. Francken , E. Martens , M. Vogels . An analytical integration method for the simulation of continuous-time ΔΣ modulators. IEEE Trans. Comput.-Aided Des. , 3 , 389 - 399
    61. 61)
      • B. De Smedt , G. Gielen . WATSON: design space boundary exploration and model generation for analogue and RF IC design. IEEE Trans. Comput.-Aided Des. , 2 , 213 - 224
    62. 62)
      • S. Director , W. Maly , A. Strojwas . (1990) VLSI design for manufacturing: yield enhancement.
    63. 63)
      • J. Zhang , M. Styblinski . (1995) Yield and variability optimization of integrated circuits.
    64. 64)
      • Mukherjee, T., Carley, L.R., Rutenbar, R.: `Synthesis of manufacturable analogue circuits', Proc. ACM/IEEE Int. Conf. on Computer-Aided Design (ICCAD), November 1995, p. 586–593.
    65. 65)
      • Debyser, G., Gielen, G.: `Efficient analogue circuit synthesis with simultaneous yield and robustness optimization.', Proceedings IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), November 1998, p. 308–311.
    66. 66)
      • K. Antreich , H. Graeb , C. Wieser . Circuit analysis and optimization driven by worst-case distances. IEEE Trans. Comput.-Aided Des. , 1 , 57 - 71
    67. 67)
      • J. Kuhn . Analogue module generators for silicon compilation. VLSI Syst. Des. , 5
    68. 68)
      • G. Beenker , J. Conway , G. Schrooten , A. Slenter . Analogue CAD for consumer ICs.
    69. 69)
      • J. Rijmenants . ILAC: an automated layout tool for analogue CMOS circuits. IEEE J. Solid-State Circuits , 4 , 417 - 425
    70. 70)
      • J. Cohn , D. Garrod , R. Rutenbar , L.R. Carley . (1994) Analogue device-level layout generation.
    71. 71)
    72. 72)
      • Mogaki, M.: `LADIES: an automated layout system for analogue LSI's', Proc. ACM/IEEE Int. Conf. on Computer-Aided Design (ICCAD), November 1989, p. 450–453.
    73. 73)
    74. 74)
      • E. Malavasi , E. Charbon , E. Felt , A. Sangiovanni-Vincentelli . Automation of IC layout with analogue constraints. IEEE Trans. Comput.-Aided Des. , 8 , 923 - 942
    75. 75)
      • E. Malavasi , A. Sangiovanni-Vincentelli . Area routing for analogue layout. IEEE Trans. Comput.-Aided Des. , 8 , 1186 - 1197
    76. 76)
      • Charbon, E., Malavasi, E., Choudhury, U., Casotto, A., Sangiovanni-Vincentelli, A.: `A constraint-driven placement methodology for analogue integrated circuits', Proc. IEEE Custom Integrated Circuits Conference (CICC), May 1992, p. 28.2.1–28.2.4.
    77. 77)
      • E. Malavasi , E. Felt , E. Charbon , A. Sangiovanni-Vincentelli . Symbolic compaction with analogue constraints. Int. J. Circuit Theory Appl. , 4 , 433 - 452
    78. 78)
      • Basaran, B., Rutenbar, R., Carley, L.R.: `Latchup-aware placement and parasitic -bounded routing of custom analogue cells', Proc. ACM/IEEE Int. Conf. on Computer-Aided Design (ICCAD), November 1993.
    79. 79)
    80. 80)
      • Lampaert, K., Gielen, G., Sansen, W.: `Analogue routing for performance and manufacturability', Proc. IEEE Custom Integrated Circuits Conf. (CICC), May 1996, p. 175–178.
    81. 81)
      • C. De Ranter , G. Van der Plas , M. Steyaert , G. Gielen , W. Sansen . CYCLONE: Automated design and layout of RF LC-oscillators. IEEE Trans. Comput.-Aided Des. , 1161 - 1170
    82. 82)
      • G. Van der Plas , J. Vandenbussche , G. Gielen , W. Sansen . A layout synthesis methodology for arraytype analogue blocks. IEEE Trans. Comput.-Aided Des. , 6 , 645 - 661
    83. 83)
    84. 84)
      • Mitra, S., Nag, S., Rutenbar, R., Carley, L.R.: `System-level routing of mixed-signal ASICs in WREN', ACM/IEEE Int. Conf. on Computer-Aided Design (ICCAD), November 1992.
    85. 85)
    86. 86)
      • Donnay, S., and Gielen, G. (Eds.): ‘Analysis and reduction techniques for substrate noise coupling in mixed-signal integrated circuits’ (Kluwer Academic Publishers, 2003).
    87. 87)
      • Leenaerts, D., Gielen, G., Rutenbar, R.: `CAD solutions and outstanding challenges for mixed-signal and RF IC design', Proc. Int. Conf. on Computer-Aided Design (ICCAD), November 2001, p. 270–277.
    88. 88)
    89. 89)
      • N. Verghese , T. Schmerbeck , D. Allstot . (1995) Simulation techniques and solutions for mixedsignal coupling in integrated circuits.
    90. 90)
    91. 91)
      • T. Blalack . (1999) Design techniques to reduce substrate noise, Advances in analogue circuit design.
    92. 92)
      • J. Costa , M. Chou , L.M. Silveira . Efficient techniques for accurate modelling and simulation of substrate coupling in mixed-signal IC's. IEEE Trans. Comput.-Aided Des. , 5 , 597 - 607
    93. 93)
      • E. Charbon , P. Miliozzi , L. Carloni , A. Ferrari , A. Sangiovanni-Vincentelli . Modelling digital substrate noise injection in mixed-signal IC's. IEEE Trans. Comput.-Aided Des. , 3 , 301 - 310
    94. 94)
    95. 95)
    96. 96)
      • Y. Zinzius , G. Gielen , W. Sansen . (2003) Modelling the impact of digital substrate noise on analogue integrated circuits, Analysis and reduction techniques for substrate noise coupling in mixed-signal integrated circuits.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cdt_20045116
Loading

Related content

content/journals/10.1049/ip-cdt_20045116
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address