Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Compression considerations in test access mechanism design

Compression considerations in test access mechanism design

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Computers and Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A low-cost test solution for core-based system-on-a-chip (SoC) comprises of test access mechanism (TAM) design – for facilitating access to the embedded cores – and the use of test data compression (TDC) methods – for reducing test resources. While most previous work has considered TAM design and TDC independently, this work analyzes the interrelations between the two, outlining that unless compression characteristics are integrated in the TAM design, test resource penalties may be incurred. This is due to the dependency of some TDC methods on test bus width and care bit density, both of which are related to test time, and hence to TAM design. Therefore, this paper analyzes the interactions between TDC and TAM, and highlights the compression characteristics which need to be considered in compression-driven TAM solutions for reducing test resource penalties. Furthermore, it also shows how an existing TAM design method can be enhanced toward a compression-driven solution.

References

    1. 1)
      • Gonciari, P.T., Al-Hashimi, B., Nicolici, N.: `Test data compression: the system integrator's perspective', Proc. DATE, 2003, p. 726–731.
    2. 2)
      • Iyengar, V., Chandra, A., Schweizer, S., Chakrabarty, K.: `A unified approach for SOC testing using test data compression and TAM optimization', Proc. DATE, 2003, p. 1188–1189.
    3. 3)
      • Iyengar, V., Chakrabarty, K., Marinissen, E.J.: `Co-optimization of test wrapper and test access architecture for embedded cores', Proc. ITC, 2001, p. 1023–1032.
    4. 4)
      • B. Bottoms . The third millennium's test dilemma. IEEE Des. Test Comput. , 7 - 11
    5. 5)
      • E.J. Marinissen , R. Kapur , M. Lousberg , T. McLaurin , M. Ricchetti , Y. Zorian . On IEEE P1500's standard for embedded core test. J. Electron. Test.: Theory Appl. , 365 - 383
    6. 6)
      • Gonciari, P.T., Al-Hashimi, B., Nicolici, N.: `Integrated test data decompression and core wrapper design for low-cost system-on-a-chip testing', Proc. ITC, 2002, p. 64–73.
    7. 7)
      • P.T. Gonciari , B. Al-Hashimi , N. Nicolici . Variable-length input Huffman coding for system-on-a-chip test. IEEE Trans. Comput.-Aided Des. , 783 - 796
    8. 8)
      • Koranne, S., Iyengar, V.: `On the use of k tuples for SoC test schedule representation', Proc. ITC, 2002, p. 539–548.
    9. 9)
      • Rajski, J., Tyszer, J., Kassab, M., Mukherjee, N., Thompson, R., Tsai, K.-H., Hertwig, A., Tamarapalli, N., Mrugalski, G., Eide, G., Qian, J.: `Embedded deterministic test for low cost manufacturing test', Proc. ITC, 2002, p. 301–310.
    10. 10)
      • E. Larsson , K. Arvidsson , H. Fujiwara , Z. Peng . Efficient test solutions for core-based designs. IEEE Trans. Comput.-Aided Des. , 758 - 775
    11. 11)
      • Goel, S.K., Marinissen, E.: `Layout-Driven SOC test architecture design for test time and wire length minimization', Proc. DATE, 2003, p. 738–743.
    12. 12)
      • Dorsch, R., Wunderlich, H.-J.: `Tailoring ATPG for embedded testing', Proc. ITC, 2001, p. 530–537.
    13. 13)
      • Koenemann, B., Barnhart, C., Keller, B., Snethen, T., Farnsworth, O., Wheater, D.: `A Smart-BIST variat with guaranteed encoding', Proc. ATS, 2001, p. 325–330.
    14. 14)
      • ITRS: ‘The international technology roadmap for semiconductors, 2001 edition’. http://public.itrs.net/.
    15. 15)
      • Gonciari, P.T., Al-Hashimi, B., Nicolici, N.: `Reducing synchronization overhead in test data compression environments', Proc. ETW, 2002, p. 147–152.
    16. 16)
      • Jas, A., Ghosh-Dastidar, J., Touba, N.A.: `Scan vector compression/decompression using statistical coding', Proc. VTS, 1999, p. 114–121.
    17. 17)
      • Zorian, Y., Marinissen, E.J.: `System chip test: how will it impact your design?', Proc. DAC, 2000, p. 136–142.
    18. 18)
      • Bayraktaroglu, I., Orailoglu, A.: `Test volume and application time reduction through scan chain concealment', Proc. DAC, 2001, 38, p. 151–155.
    19. 19)
      • Marinissen, E.J., Arendsen, R., Bos, G., Dingemanse, H., Lousberg, M., Wouters, C.: `A structured and scalable mechanism for test access to embedded reusable cores', Proc. ITC, 1998, p. 284–293.
    20. 20)
      • A. Chandra , K. Chakrabarty . System-on-a-Chip test data compression and decompression architectures based on golomb codes. IEEE Trans. Comput.-Aided Des. , 113 - 120
    21. 21)
      • Li, L., Chakrabarty, K.: `Test data compression using dictionaries with fixed-length indices', Proc. VTS, 2003, p. 219–224.
    22. 22)
      • Khoche, A., Rivoir, J.: `I/O bandwidth bottleneck for test: Is it real?', Proc. Test Resource Partitioning Workshop, IEEE Computer Society Press, Washington, DC, Nov. 2000, p. 2.3–1–2.3–6.
    23. 23)
      • ‘Virginia Polytechnic Institute and State University’, http://www.ee.vt.edu/~ha/cadtools/cadtools.html.
    24. 24)
      • Iyengar, V., Chakrabarty, K., Marinissen, E.J.: `On using rectangle packing for SOC wrapper/TAM co-optimization', Proc. VTS, 2002, p. 253–258.
    25. 25)
      • Marinissen, E.J., Goel, S.K.: `Control-aware test architecture design for modular SOC testing', Proc. ETW, 2003, p. 57–62.
    26. 26)
      • Brglez, F., Bryan, D., Kozminski, K.: `Combinational profiles of sequential benchmark circuits', Proc. ISCAS, 1989, p. 1929–1934.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cdt_20045043
Loading

Related content

content/journals/10.1049/ip-cdt_20045043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address