Unified SOC test approach based on test data compression and TAM design

Access Full Text

Unified SOC test approach based on test data compression and TAM design

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Computers and Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Test access mechanism (TAM) optimisation and test data compression lead to a reduction in test data volume and testing time for SOCs. In this paper, we integrate for the first time both these approaches into a single test methodology. We show how an integrated test architecture based on TAMs and test data decoders can be designed. The proposed approach offers considerable savings in test resource requirements. Two case studies using the integrated test architecture are presented. Experimental results on test data volume reduction, savings in test application time and the low test pin overheads for a benchmark SOC demonstrate the effectiveness of this approach.

Inspec keywords: integrated circuit testing; logic testing; system-on-chip

Other keywords: integrated test; test data volume reduction; single test methodology; TAM optimisation; unified SOC test approach; testing time; test resource requirements; test data compression; test access mechanism; test application time; test pin overheads

Subjects: Logic design methods; Digital circuit design, modelling and testing; Semiconductor integrated circuit design, layout, modelling and testing

References

    1. 1)
      • Jas, A., Touba, N.A.: `Test vector decompression via cyclical scan chains and its application to testing core-based design', Proc. ITC, 1998, p. 458–464.
    2. 2)
      • Y. Huang . On concurrent test of core-based SOC design. J. Electron. Test., Theory Appl. , 401 - 414
    3. 3)
      • Khoche, A., Volkerink, E., Rivoir, J., Mitra, S.: `Test vector compression using EDA-ATE synergies', Proc. VLSI, 2002, p. 97–102.
    4. 4)
    5. 5)
      • Marinissen, E.J., Iyengar, V., Chakrabarty, K.: `A set of benchmarks for modular testing of SOCs', Proc. ITC, 2002, p. 519–528, Benchmarks available at http://www.extra.research.philips.com/itc02socbenchm.
    6. 6)
      • Heidel, D.: `High-speed serializing/de-serializing design-for-test methods for evaluating a 1 GHz microprocessor', Proc. VLSI, 1998, p. 234–238.
    7. 7)
      • Koranne, S.: `On test scheduling for core-based SOCs', Proc. VLSI, 2002, p. 505–510.
    8. 8)
      • Rajski, J.: `DFT for high-quality low cost manufacturing test', Proc. ATS, 2001, p. 3–8.
    9. 9)
      • A. Chandra , K. Chakrabarty . Test data compression and decompression based on internal scan chains and Golomb coding. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. , 715 - 722
    10. 10)
      • Gonciari, P.T., Al-Hashimi, B., Nicolici, N.: `Improving compression ratio, area overhead, and test application time for system-on-a-chip test data compression/decompression', Proc. DATE, 2002, p. 604–611.
    11. 11)
      • A. Chandra , K. Chakrabarty . Test resource partitioning for SOCs. IEEE Des. Test Comput. , 80 - 91
    12. 12)
      • K. Chakrabarty , V. Iyengar , A. Chandra . (2002) Test resource partitioning for system-on-a-chip.
    13. 13)
      • International Technology Roadmap for Semiconductors (ITRS). Silicon Industry Association (SIA). http://public.itrs.net, 2001.
    14. 14)
      • Hamzaoglu, I., Patel, J.H.: `Test set compaction algorithms for combinational circuits', Proc. ICCAD, 1998, p. 283–289.
    15. 15)
      • El-Maleh, A., al Zahir, S., Khan, E.: `A geometric-primitives-based compression scheme for testing systems-on-chip', Proc. VLSI, 2001, p. 54–59.
    16. 16)
      • Iyengar, V., Chakrabarty, K., Marinissen, E.J.: `On using rectangle packing for SOC wrapper/TAM co-optimization', Proc. VLSI, 2002, p. 253–258.
    17. 17)
      • Dorsch, R., Wunderlich, H.-J.: `Tailoring ATPG for embedded testing', Proc. ITC, 2001, p. 530–537.
    18. 18)
      • V. Iyengar , K. Chakrabarty , E.J. Marinissen . Test wrapper and test access mechanism co-optimization for system-on-chip. J. Electron. Test., Theory Appl. , 213 - 230
    19. 19)
      • Barnhart, C.: `OPMISR: The foundation for compressed ATPG vectors', Proc. ITC, 2001, p. 748–757.
    20. 20)
      • Goel, S.K., Marinissen, E.J.: `Cluster-based test architecture design for system-on-chip', Proc. VLSI, 2001, p. 259–264.
    21. 21)
      • A. Chandra , K. Chakrabarty . Test data compression and test resource partitioning for system-on-a-chip using frequency-directed run-length (FDR) codes. IEEE Trans. Comput. , 1076 - 1088
    22. 22)
      • Larsson, E., Peng, Z.: `An integrated system-on-chip test framework', Proc. DATE, 2002, p. 138–144.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cdt_20045030
Loading

Related content

content/journals/10.1049/ip-cdt_20045030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading