On the dynamic coupling ratio of drain-coupling split gate flash using quasi-two-dimensional analysis

Access Full Text

On the dynamic coupling ratio of drain-coupling split gate flash using quasi-two-dimensional analysis

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An analytical model for evaluating the bias-dependent and dynamic drain coupling ratio of the drain-coupling source-side injection split gate flash is developed with comparisons of classical extraction methods. A new method to measure the technology-dependent select gate coupling ratio is also presented. Starting with the quasi-two-dimensional analyses on separate channel regions, the channel potential distributions are utilised to derive the analytical expressions of the drain coupling ratio as functions of the applied bias and storage charge. In good agreement with the experimental programming transient, full dynamics of the analytical drain coupling ratio not only explain the discrepant experimental results from classical extraction methods but also provide a solid base on designing split gate devices. Additionally, the characteristic lengths and saturation voltages of high field regions are extracted by the substrate current and the programming transient. A mean free path of about 92 Å and a impact ionisation field of 1.74 MV/cm are also verified from the source-side injection device.

Inspec keywords: flash memories; impact ionisation; integrated circuit modelling; carrier mean free path; semiconductor device models

Other keywords: characteristic lengths; drain-coupling split gate flash; saturation voltages; split gate devices; high field regions; dynamic coupling ratio; mean free path; extraction methods; programming transient; channel potential distributions; impact ionisation field; analytical drain coupling ratio; source-side injection device; source-side injection split gate flash; quasi-2D analysis; channel regions

Subjects: Semiconductor integrated circuit design, layout, modelling and testing; Semiconductor storage; Memory circuits

References

    1. 1)
      • A.A.M. Amin . Speed optimised array architecture for flash EEPROMs. IEE Proc. G, Circuits Devices Syst. , 6 , 177 - 181
    2. 2)
      • P. Cappellett , C. Golla , P. Olivo , E. Zanoni . Flash memories.
    3. 3)
      • J.V. Houdt , L. Haspeslagh , D. Wellekens , L. Deferm , G. Groeseneken , H.E. Maes . HIMOS-A high efficiency flash EEPROM cell for embedded memory applications. IEEE Trans. Electron Devices , 12 , 2255 - 2263
    4. 4)
      • http://www.sst.com/products/, ‘SST's product families, patented SuperFlash™’.
    5. 5)
      • Chou, A.H.F., Yao, Y.Y., Wong, W.Z., Yang, C.S., King, Y.C., Hsu, C.C.H.: `New coupling ratio extraction method for split gate flash memory', 16thNonvolatile Semi. Memory Worshop, 2000, Monterey, California, USA.
    6. 6)
      • http://www.tsmc.com/english/technology/t0105.htm, ‘Embedded non-volatile memory, TSMC's EmbFlash™’.
    7. 7)
      • Y.A. Elmansy , A.R. Boothroyd . A simple two-dimensional model for IGFET operation in the saturation region. IEEE Trans. Electron Devices , 5 , 254 - 262
    8. 8)
      • S.M. Sze . (1981) Physics of semiconductor devices.
    9. 9)
      • T.Y. Chan , P.K. Ko , C. Hu . A simple method to characterize substrate current in MOSFETs. IEEE Electron Devices Lett. , 12 , 505 - 507
    10. 10)
      • C.R. Crowell , S.M. Sze . Temperature dependence of avalanche multiplication in semiconductors. Appl. Phys. Lett. , 7 , 242 - 244
    11. 11)
      • Ko, P.K.: `Hot-electron effect in MOSFET', 1982, PhD, University of California, Berkeley.
    12. 12)
      • Kotov, A., Levi, A., Tkachev, Y., Markov, V.: `Tunneling phenomenon in superflash cell', Proc. NVM Tech. Symp., 2002, p. 110–115.
    13. 13)
    14. 14)
      • B.J. Ahm , J.H. Sone , J.W. Kirn , I.H. Choi , D.H. Kirn . A simple and efficient self-limiting erase scheme for high performance split-gate flash memory cells. IEEE Electron Devices Lett. , 11 , 438 - 440
    15. 15)
      • Crisenza, G., Annunziata, R., Camerlenghi, E., Cappelletti, P.: `Nonvolatile memories: issues, challenges and trends for the 2000's scenario', Proc. ESSERC ‘96, 1996, Bologna, Italy, p. 121–130.
    16. 16)
      • T.Y. Chan , P.K. Ko , C. Hu . Dependence of channel electric field on device scaling. IEEE Electron Devices Lett. , 10 , 551 - 553
    17. 17)
      • C.M. Liu , J. Brennan , K. Chan , P. Guo , A.V. Kordesch , K.Y. Su . On the capacitance coupling ratios of a source-side injection flash memory cell. Jpn. J. Appl. Phys. , 4 , 2958 - 2962
    18. 18)
      • Ko, P.K., Muller, R.S., Hu, C.: `A unified model for hot-electron currents in MOSFETs', Int. Electron Devices Meeting (IEDM) Tech. Dig., 1981, 27, p. 600–603.
    19. 19)
      • C. Hu , S. Tam , F.C. Hsu , P.K. Ko , T.Y. Chan , K.W. Terrill . Hot-electron-induced MOSFET degradation-model, monitor, and improvement. IEEE Trans. Electron Devices , 2 , 375 - 384
    20. 20)
      • G.B. Jackson , S.V. Awsare , L.D. Engh , P. Holzmann , O.C. Kao , C.R. Palmer , A. Raini , C.M. Liu , A.V. Kordesch . An analoge record, playback, and processing system on a chip for mobile communications devices. IEEE J. Solid-State Circuits , 3 , 446 - 449
    21. 21)
      • Kianian, S., Levi, A., Lee, D., Hu, Y.W.: `A novel 3 volts-only, small sector erase, high density flash EEPROM', Symp. VLSI Technology Dig. Tech. Papers, 1994, Honolulu, HI, USA, 64, p. 71–72.
    22. 22)
      • Mih, R., Harrington, J., Houlihan, K., Lee, H.K., Chan, K., Johnson, J., Chen, B., Van, J., Schmidt, A., Kirn, K., Shum, D., Lee, D., Levi, A., Lam, C.: `0.18 μm modular triple self-aligned embedded split-gate flash memory', Symp, VLSI Technology Dig. Tech. Papers, 2000, Hondulu, HI, USA, 131, p. 120–121.
    23. 23)
      • Wu, A.T., Chan, T.Y., Ko, P.K., Hu, C.: `A novel high-speed, 5-volt programming EPROM structure with source-side injection', Int. Electron Devices Meeting (IEDM) Tech. Dig., 1986, 32, p. 584–587.
    24. 24)
      • F. Stern , W.E. Howard . Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. , 11 , 816 - 835
    25. 25)
      • W.D. Brown , I.E. Brewer . (1987) Nonvolatile semiconductor memory technology.
    26. 26)
      • K.W. Terrill , C. Hu , P.K. Ko . An analytical model for the channel electric field in MOSFETs with graded-drain structures. IEEE Electron Device Lett. , 12 , 440 - 442
    27. 27)
      • S. Tam , P.K. Ko , C. Hu . Lucky-electron model of channel hot-electron injection in MOSFETs. IEEE Trans. Electron Devices , 9 , 1116 - 1125
    28. 28)
    29. 29)
      • T.H. Ning , C.M. Osburn , H.N. Yu . Emission probability of hot electrons from silicon into silicon dioxides. J. Appl. Phys. , 6 , 286 - 293
    30. 30)
      • Fujiwara, H., Arimoto, M., Hkaida, T., Sudo, S., Kurooka, K., Nagassawa, H., Hiroshima, T., Mamero, K.: `A new method for measuring the coupling coefficient of a split-gate flash EEPROM without an additional test structure', Proc. IEEE Int. Conf. On Microelectronic Test Structures, 2001, Kobe, Japan, 14(3), p. 43–46.
    31. 31)
    32. 32)
      • N.K. Zous , Y.J. Chen , C.Y. Chin , W.J. Tsai , T.C. Lu , M.S. Chen , W.P. Lu , T. Wang , S.C. Pan , C.Y. Lu . An endurance evaluation method for flash EEPROM. IEEE Trans. Electron Devices , 12 , 2255 - 2263
    33. 33)
      • Frayer, J., Saiki, W., Tran, H.V., Lee, D., Klinger, P., Su, C.S.: `A 78 mm2 (0.18 μm) 3.3 V 256 Mb multi-level NOR split-gate flash memory for mass storage', Proc. 2003 NVSM Workshop, Monterey, CA, USA, p. 29–30.
    34. 34)
      • K. Mayaram , J.C. Lee , C. Hu . A model for the electric field in lightly doped drain structures. IEEE Trans. Electron Devices , 7 , 1509 - 1518
    35. 35)
      • H.S. Wong . Gate current injection in MOSFET's with a split-gate (virtual drain) structure. IEEE Electron Devices Lett. , 5 , 262 - 264
    36. 36)
      • G. Baum , H. Beneking . Drift velocity saturation in MOS transistors. IEEE Trans. Electron Devices , 6 , 481 - 482
    37. 37)
      • S. Tam , P.K. Ko , C. Hu , R.S. Muller . Correlation between substrate and gate currents in MOSFETs. IEEE Trans. Electron Devices , 11 , 1740 - 1744
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20045194
Loading

Related content

content/journals/10.1049/ip-cds_20045194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading