Towards individual molecules as electronic components

Access Full Text

Towards individual molecules as electronic components

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The goal of electronic functionality within an individual organic molecule was set many decades ago, but achieving it has not been straightforward. The simple combining rules of chemistry allow an unlimited variety of structures, and it has not been clear which are worth pursuing. It has also not been clear how it might be possible to assemble well-defined nanostructures of usable complexity. While the first steps along this road have required the development of new concepts and have been painfully slow, several milestones have now been passed. The confusion surrounding conduction through ultrathin layers has now been resolved, and stable low-defect two-terminal devices have now been fabricated in which the dominant charge transport is demonstrably through the electroactive organic molecules. Results obtained from these nanostructures will provide basic information about charge transport mechanisms on the molecular scale that will be vital for the future design of high-performance electronic components.

Inspec keywords: molecular electronics; nanoelectronics; organic compounds; charge exchange

Other keywords: nanostructures; molecular electronic components; electroactive organic molecules; electronic functionality; two-terminal device; ultrathin layers; low-defect device; organic molecule; charge transport mechanism

Subjects: Molecular electronics; Semiconductor devices; Nanometre-scale semiconductor fabrication technology

References

    1. 1)
      • S.M. Sze . (1997) Modern Semiconductor Device Physics.
    2. 2)
    3. 3)
      • L. Netzer , J. Sagiv . A new approach to construction of artificial monolayer assemblies. J. Am. Chem. Soc. , 674 - 676
    4. 4)
    5. 5)
      • G.G. Roberts . (1990) Langmuir-Blodgett films.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • K.E. Drexler . Molecular engineering - An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA , 5275 - 5278
    10. 10)
      • R. Landauer . (1970) Philos. Mag..
    11. 11)
      • A.M. Bibo , C.M. Knobler , I.R. Peterson . A monolayer phase miscibility comparison of long chain fatty acids and their ethyl esters. J. Phys. Chem. , 5591 - 5599
    12. 12)
    13. 13)
      • H. Kuhn, personal communication.
    14. 14)
      • M.A. Reed , C. Zhou , M.R. Deshpande , C.J. Muller , T.P. Burgin , J. Jones , L.M. Tour . The electrical measurement of molecular junctions. Ann. NY Acad. Sci. , 133 - 144
    15. 15)
      • G.J. Ashwell , L. Hamilton , L.R.H. High . Molecular rectification: asymmetric current-voltage curves from self-assembled monolayers of a donor-(π-bridge)-acceptor dye. J. Mater. Chem , 1501 - 1503
    16. 16)
    17. 17)
      • R.A. Marcus . On the energy of oxidation-reduction reactions involving electron transfer I. J. Chem. Phys. , 966 - 978
    18. 18)
    19. 19)
      • K.B. Blodgett . Monomolecular films of fatty acids on glass. J. Amer. Chem. Soc. , 495 - 495
    20. 20)
      • H. Randriamahazaka , C. Plesse , C. Teyssie , D. Chevrot . Electrochemical behaviour of poly(3,4-ethylenedioxythiophene) in a room-temperature ionic liquid. Electrochem. Commun. , 613 - 617
    21. 21)
      • I.R. Peterson , D. Vuillaume , R.M. Metzger . Analytical model for molecular-scale charge transport. J. Phys. Chem. A , 4702 - 4707
    22. 22)
      • I.R. Peterson , R.M. Kenn . Equivalence between 2-dimensional and 3-dimensional phases of aliphatic chain derivatives. Langmuir , 4645 - 4650
    23. 23)
      • G.J. Ashwell , J.R. Sambles , A.S. Martin , W.G. Parker , M. Szablewski . Rectifying characteristics of Mg/(C16H33-Q3CNQ LB Film)/Pt Structures. J. Chem. Soc. Chem. Commun , 1374 - 1376
    24. 24)
      • Winter, C.S.: personal communication.
    25. 25)
    26. 26)
    27. 27)
      • R.G. Nuzzo , D.L. Allara . Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. , 4481 - 4483
    28. 28)
    29. 29)
    30. 30)
      • R.H. Tredgold , A.J. Vickers , R.A. Allen . Structural effects on the electrical conductivity of Langmuir Blodgett multilayers of cadmium stearate. J. Phys. D. , L5 - L8
    31. 31)
    32. 32)
      • H. Kuhn . Pure Appl. Chem.. Pure Appl. Chem.
    33. 33)
      • F.L. Carter . (1982) Molecular electronic devices.
    34. 34)
      • W. Chorlton . (2002) The invention of the silicon chip.
    35. 35)
      • Okazaki, N., Sambles, J.R.: `Extended abstracts, International Symposium on Organic Molecular Electronics', 18–19 May 2000, Nagoya, Japan, p. 66–67.
    36. 36)
      • F. Gutman , L.E. Lyons . (1967) Organic semiconductors.
    37. 37)
      • P. Eisler . (1989) My life with the printed circuit.
    38. 38)
      • A.M. Bibo , I.R. Peterson . Defect annealing rate in monolayers displaying a smectic-L phase. Thin Solid Films , 515 - 518
    39. 39)
    40. 40)
      • R.H. Tredgold , C.S. Winter . Tunnelling currents in Langmuir Blodgett monolayers of stearic acid. J. Phys. D. , L185 - L188
    41. 41)
      • R.M. Metzger , T. Xu , I.R. Peterson . Electrical rectification by a monolayer of hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes. J. Phys. Chem. B , 7280 - 7290
    42. 42)
    43. 43)
      • S. Datta . (1995) Electronic transport in mesoscopic systems.
    44. 44)
      • H. Shirakawa , E.J. Louis , A.G. MacDiarmid , C.K. Chiang , A.J. Heeger . Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J.C.S. Chem. Commun. , 578 - 579
    45. 45)
    46. 46)
      • I.R. Peterson , W. Göpel , Ch. Ziegler . (1992) Langmuir-Blodgett films: a route to molecular electronics, Nanostructures based on molecular materials.
    47. 47)
    48. 48)
      • I.R. Peterson , G. Mahler , V. May , M. Schreiber . (1996) Langmuir-Blodgett techniques, Molecular electronics.
    49. 49)
      • D. Hertel , H. Bässler , U. Scherf , H.H. Horhold . Charge carrier transport in conjugated polymers. J Chem. Phys. , 9214 - 9222
    50. 50)
      • W.A. Little . Possibility of synthesizing an organic superconductor. Phys. Rev. A , 1416 - 1424
    51. 51)
      • Bloor , RR. Chance . (1985) Polydiacetylenes NATO ASI.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20040990
Loading

Related content

content/journals/10.1049/ip-cds_20040990
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading