Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Comparison of low-frequency noise in III–V and Si/SiGe HBTs

Comparison of low-frequency noise in III–V and Si/SiGe HBTs

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The low-frequency noise characteristics of double self-aligned InP/InGaAs and two types of Si/SiGe heterojunction bipolar transistors (HBTs) were investigated. Spectral analysis shows no striking differences; the spectra are composed of a 1/f component and the white noise is always reached at low biases. A general trend for all the transistors was the presence of Lorentzian component(s) for the smallest devices. The voltage coherence function was always unity for SiGe transistors; and for the first time, it was found to be close to zero for InP devices. Concerning the 1/f noise level, both types of transistors have approximately a quadratic dependence on base current bias and an inverse dependence on the emitter area. Thus, a comparison of the 1/f noise level has been made using the Kb parameter, and values around 10−9 μm2 for SiGe HBTs and around 10−8 μm2 for InP HBTs were found. These results are of the same order of magnitude as the best published ones. The low-frequency noise results suggest that excess noise sources are mainly located at the intrinsic emitter–base junction for the two types of SiGe devices, and, for the InP HBTs, a correlated noise source is located at the emitter periphery. To compare different devices and technologies, fc/fT was studied as a function of collector current density and for some HBT technologies fc/fTJc (fc is corner frequency at which the white noise and 1/f noise are equal and fT is the unity current gain frequency). The effects of different processing conditions, designs and temperature were also investigated and discussed.

References

    1. 1)
    2. 2)
    3. 3)
      • J. J. Liou . (1996) Principles and analysis of AlGaAs/GaAs heterojunction bipolar transistors.
    4. 4)
      • A. van der Ziel , X. Zhang , A.H. Pawlikiewicz . Location of 1/f noise sources in BJT's and HBT's – I : Theory. IEEE Trans. Electron Devices , 1371 - 1376
    5. 5)
    6. 6)
      • Deen, M.J.: `Low frequency noise in npn and pnp polysilicon emitter bipolar junction transistors', Proc. 7th Symp. on Quantum 1/f noise & other low frequency fluctuations in electronic devices, 1999, AIP Press, Woodbury, New York, USA, p. 105–122, AIP Conference Proceedings 466.
    7. 7)
    8. 8)
      • Gagl, R., Aufinger, K., Böck, J., Meister, T.F.: `Low-frequency noise characteristics of advanced Si and SiGe bipolar transistors', Proc. ESSDERC’ 97, 1997, p. 536–539.
    9. 9)
      • L.S. Vempati , J.D. Cressler , J.A. Babcock , R.C. Jaeger , D.L. Harame . Low-frequency noise in UHC/CVD epitaxial Si and SiGe bipolar transistors. IEEE J.Solid-State Circuits , 1458 - 1467
    10. 10)
      • Chen, X., Deen, M. J.: unpublished results.
    11. 11)
      • A. van der Ziel . Theory of shot noise in junction diodes and junction transistors. Proc. IRE
    12. 12)
      • M.N. Tutt , D. Pavlidis , M.A. Khatibzadeh , B. Bayraktaroglu . Investigation of HBT oscillator noise through 1/f noise and noise upconversion. IEEE MTT-S. Int. Microw. Symp. Dig. , 727 - 730
    13. 13)
    14. 14)
      • Koning, U., Gruhle, A., Schuppen, A.: `SiGe devices and circuits: where are advantages over III/V?', Proc. GaAs IC Symp., 1995, p. 14–17.
    15. 15)
      • D.C. Ahlgren , G. Freeman , B. Jagannathan , S. Subbanna . Silicon-germanium HBTs for 40 Gb/s and beyond. III-Vs Rev. , 36 - 41
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • A. Penarier , S.G-. Jarrix , C. Delseny , F. Pascal , J.C. Vildeuil , M. Valenza , D. Rigaud . Low-frequency noise in III-V high-speed devices. IEE Proc., Circuits Devices Syst. , 59 - 67
    20. 20)
    21. 21)
      • J. Tang , G. Niu , J.D. Cressler , S. Zhang , A.J. Joseph , D.L. Harame . Low-frequency noise figures-of-merit in RF SiGe HBT technology. IEEE MTT-S Int. Microw. Symp. Dig.
    22. 22)
    23. 23)
      • Ahlgren, D.C., Jagannathan, B., Jeng, S.-J., Smith, P., Angell, D., Chen, H., Khater, M., Pagette, F., Rieh, J.-S., Schonenberg, K., Stricker, A., Freeman, G., Joseph, A., Stein, K., Subbanna, S.: `Process variability analysis of a Si/SiGe HBT technology with greater 200 GHz performances', Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2002, Minneipolis, MN, USA, p. 80–83.
    24. 24)
      • Godin, J., Riet, M., Blayac, S., Berdaguer, P., Dhalluin, V., Alexandre, F., Kahn, M., Pinquier, A., Kasbari, A., Moulu, J., Konczykowska, A.: `InP DHBT technology and design for 40 Gbit/s full-rate-clock communication circuits', Technical Digest of 24th Gallium Arsenide Integrated Circuit (GaAs IC) Symp., 2002, p. 215–218.
    25. 25)
    26. 26)
      • J. I. Song , C. J. Palmstrom , B. P. Van der Gaag , W. P. Hong , J. R. Hayes , K. B. Chough . High-performance InP/InGaAs heterojunction bipolar transistors with highly carbon-doped base grown chemical beam epitaxy. Electron. Lett. , 666 - 667
    27. 27)
    28. 28)
      • M. J. Deen , S. Rumyantsev , M. Schroter . On the origin of low frequency noise in polysilicon emitter transistors. J. Appl. Phys. , 1192 - 1195
    29. 29)
    30. 30)
    31. 31)
      • Van Haaren, B., Gruhle, A., Mahner, C., Escotte, L., Llopis, O., Plana, R., Graffeuil, J.: `HBT SiGe technology dedicated to low phase noise applications', Proc. Workshop on High performance electron devices for microwave applications, 1997, p. 291–296.
    32. 32)
    33. 33)
      • J. Raoult , L. Militaru , J. Verdier , A. Souifi . Time domain and frequency analysis of RTS noise in deep submicron SiGe HBTs. Nucl. Instrum. Methods Phys. Res. B , 435 - 440
    34. 34)
      • M. Sanden , B.G. Malm , J.V. Grahn , M. Ostling . Lateral base design rules for optimized low-frequency noise of differentially grown SiGe heterojunction bipolar transistors. Microelectron. Reliab. , 881 - 886
    35. 35)
      • A. Schuppen , J. Berntgen , P. Maier , M. Tortschanoff , W. Kraus , M. Averney . An 80 GHz SiGe production technology. III-Vs Rev. , 42 - 46
    36. 36)
    37. 37)
      • A. Ng , M.J. Deen , J. Ilowski . Determination of the trap energy levels and emitter area dependence of the noise in poly-emitter BJTs from generation-recombination noise spectra. Can. J. Phys. , 949 - 958
    38. 38)
      • Blayac, S., Riet, M., Benchimol, J.L., Alexandre, F., Berdaguer, P., Kahn, M., Pinquier, A., Dutisseuil, E., Moulu, J., Kasbari, A., Konczykowska, A., Godin, J.: `MSI InP/InGaAs DHBT technology: beyond 40 Gbit/s circuits', Proc. Conf. on Indium phosphide and related materials, 2002, Stockholm, Sweden, p. 51–54.
    39. 39)
      • Regis, M., Borgarino, M., Bary, L., Llopis, O., Graffeuill, J., Gruhle, A., Kovacic, S., Plana, R.: `SiGe bipolar technologies for low phase noise RF and microwave applications', Proc. IEEE Radio Frequency Integrated Circuits Symp., 2000, p. 245–248.
    40. 40)
    41. 41)
    42. 42)
      • A. van der Ziel . (1986) Noise in solid-state devices and circuits.
    43. 43)
      • S. G-Jarrix , A. Penarier , F. Pascal , C. Delseny , C. Chay , S. Blayac . Analysis of 1/f noise sources in InP/InGaAs heterojunction bipolar transistors. J. Appl. Phys , 4246 - 4252
    44. 44)
    45. 45)
      • H. Baudry , C. Fellows , B. Martinet , F. Romagna , M. Marty , J. Mourier , G. Troillard , M. Laurens , A. Monroy , D. Dutartre , A. Chantre . A70 GHz- fT double polysilicon SiGe HBT using a non selective epitaxial growth. Mater. Sci. Eng. , 21 - 25
    46. 46)
    47. 47)
      • M. Sanden , M. Ostling , O. Marinov , M.J. Deen . Statistical simulations of the low-frequency noise and the noise level variation using a model based on generation-recombination centers. Fluct. Noise Lett. , 251 - 260
    48. 48)
      • F. Pascal , S.G-. Jarrix , C. Delseny , A. Penarrier , C. Chay , M.J. Deen . Comparison of low frequency noise in III-V and Si/SiGe HBTs. Proc. SPIE - Int. Soc. Opt. Eng. , 133 - 146
    49. 49)
      • M.J. Deen , F. Pascal . Low frequency noise in silicon transistors: experiments, modeling, scaling, reliability and circuit issues. Proc. SPIE - Int. Soc. Opt. Eng. , 1 - 15
    50. 50)
    51. 51)
    52. 52)
      • Chantre, A., Marty, M., Regolini, J. L., Mouis, M., Pontcharra, J. D., Dutartre, D., Jouan, S., Chaudier, F., Assous, M., Morin, C., Roche, M.: `A highly manufacturable 0.35 μm SiGe HBT technology with 70 GHz f', Proc. 28th European Solid-State Device Research Conf., 1998, Bordeaux, France, p. 448–451.
    53. 53)
      • M.J. Deen , P. Pascal . Review of low frequency noise behavior of polysilicon emitter bipolar junction transistors. IEE Proc., Circuits Devices Syst. , 125 - 137
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20040505
Loading

Related content

content/journals/10.1049/ip-cds_20040505
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address