Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Carbon nanotube technology for solid state and vacuum electronics

Carbon nanotube technology for solid state and vacuum electronics

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors demonstrate the fabrication of solid state and vacuum electronic devices using carbon nanotubes as the active channel and emitters. Single wall and multiwall carbon nanotubes (CNT) are deposited directly on substrates using chemical vapour deposition (CVD) and plasma enhanced chemical vapour deposition (PECVD), respectively. The fabrication of top gate and side gate field effect transistors is demonstrated using single wall CNTs. Vertically aligned multiwall CNTs are used to fabricate field emitter arrays or micro-gated field emitters, which have potential application in field emission displays, microwave amplifiers or electron guns.

References

    1. 1)
      • S. Ijima . Helical microtubules of graphitic carbon. Nature
    2. 2)
      • L. Gangloff , E. Minoux , K.B.K. Teo , P. Vincent , V. Semet , V.T.. Bihn , M.H. Yang , I.Y.Y. Bu , R.G.. Lacerda , G. Pirio , J.P. Schnell , D. Pribat , D.G. Hasko , G.A.J. Amaratuga , W.I. Milne , P. Legagneux . Self-aligned, gated arrays of individual nanotube and nanowire emitters. Nano Lett.
    3. 3)
    4. 4)
    5. 5)
      • Y.G. Zhang , A.L. Chang , J. Cao , Q. Wang , W. Kim , Y.M. Li , N. Morris , E. Yenilmez , J. Kong , H.J. Dai . Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • J. Hone , M. Whitney , C. Piskoti , A. Zettl . Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B. Condens. Matter.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • H.W. Kroto , J.R. Heath , S.C. O'Brien , R.F. Curl , R.E. Smalley . C-60 – Buckminsterfullerene. Nature
    16. 16)
    17. 17)
    18. 18)
      • C. Schonenberger , A. Bachtold , C. Strunk , J.P. Salvetat , L. Forro . Interference and Interaction in multi-wall carbon nanotubes. Appl. Phys. A, Mater. Sci. Process.
    19. 19)
      • S.J. Tans , R.M. Verschueren , C. Dekker . Room-temperature transistor based on a single carbon nanotube. Nature
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • R.T.K. Baker . Catalytic growth of carbon filaments. Carbon
    27. 27)
      • N.M. Rodriguez . A review of catalytically grown carbon nanofibers. J. Mater. Res.
    28. 28)
    29. 29)
      • K.B.K. Teo , C. Singh , M. Chhowalla , W.I. Milne , H.S. Nalwa . (2004) Catalytic synthesis of carbon nanotubes without surface carbon, Encyclopedia of Nanoscience and Nanotechnology.
    30. 30)
      • R.T.K. Baker , P.S. Harris , R.B. Thomas , R.J. Waite . (1973) J. Catal..
    31. 31)
      • C. Schonenberger , A. Bachtold , C. Strunk , J.P. Salvetat , L. Forro . Interference and Interaction in multi-wall carbon nanotubes. Appl. Phys. A-Mater. Sci. Process.
    32. 32)
      • A. Thess , R. Lee , P. Nikolaev , H.J. Dai , P. Petit , J. Robert , C.H. Xu , Y.H. Lee , S.G. Kim , A.G. Rinzler , D.T. Colbert , G.E. Scuseria , D. Tomanek , J.E. Fischer , R.E. Smalley . Crystalline ropes of metallic carbon nanotubes. Science
    33. 33)
    34. 34)
      • C.A. Spindt , I. Brodie , C.E. Holland , P.R. Schwoebel , W. Zhu . (2001) Spindt Field Emitter Arrays, Vacuum Microelectronics.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • C. Journet , W.K. Maser , P. Bernier , A. Loiseau , M. Lamy de la Chapelle , S. Lefrant , P. Deniard , R. Lee , J.E. Fischer . Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature
    40. 40)
      • K.B.K. Teo , A.C. Ferrari , S.E. Rodil , J. Yuan , J.T.H. Tsai , J. Robertson , W.I. Milne , G. Fanchini , A. Tagliaferro , E. Laurenti . Highest optical gap tetrahedral amorphous carbon. Diamond Relat. Mater.
    41. 41)
      • W.A. de Heer , R. Martel . Industry sizes up nanotubes. Phys. World
    42. 42)
    43. 43)
      • Y. Zhang , N.W. Franklin , R.J. Chen , H. Dai . Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem. Phys. Lett.
    44. 44)
      • G. Pirio , P. Legagneux , D. Pribat , K.B.K. Teo , M. Chhowalla , G.A.J. Amaratunga , W.I. Milne . Fabrication and electrical characteristics of a carbon nanotube field emission microcathode with an integrated gate electrode. Nanotechnology
    45. 45)
    46. 46)
      • T. Utsumi . Vacuum Microelectronics: What's New and Exciting?. IEEE Trans. Electron Dev.
    47. 47)
    48. 48)
    49. 49)
    50. 50)
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20040408
Loading

Related content

content/journals/10.1049/ip-cds_20040408
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address