Compact modelling of noise for RF CMOS circuit design

Access Full Text

Compact modelling of noise for RF CMOS circuit design

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The thermal noise of short-channel NMOS transistors in a commercially available 0.13 -μm CMOS technology is studied. The experimental results are modelled with a non-quasi-static RF model, based on the principle of channel segmentation. The model is capable of predicting both drain and gate current noise accurately, without fitting any parameters to the measured noise data. An essential ingredient of the model is the gate resistance, which is shown to dominate the gate current noise. In the optimised device layouts, this gate resistance is mainly determined by the silicide-to-polysilicon contact resistance.

Inspec keywords: integrated circuit design; radiofrequency integrated circuits; semiconductor device models; contact resistance; CMOS integrated circuits; thermal noise; semiconductor device noise; MOSFET

Other keywords: channel segmentation; silicide-to-polysilicon contact resistance; 0.13 micron; CMOS technology; short-channel NMOS transistors; compact noise modelling; gate resistance; gate current noise prediction; RF CMOS circuit design; nonquasistatic RF model; thermal noise; drain current noise prediction

Subjects: Microwave integrated circuits; Semiconductor device modelling, equivalent circuits, design and testing; CMOS integrated circuits; Insulated gate field effect transistors; Semiconductor integrated circuit design, layout, modelling and testing

References

    1. 1)
      • Scholten, A.J., Tiemeijer, L.F., van Langevelde, R., Havens, R.J., Venezia, V.C., Zegers-van Duijnhoven, A.T.A., Neinhüs, B., Jungemann, C., Klaassen, D.B.M.: `Compact modeling of drain and gate current noise for RF CMOS', Int. Electron Devices Meeting Tech. Dig., 2002, p. 129–132.
    2. 2)
    3. 3)
      • Brederlow, R., Wenig, G., Thewes, R.: `Investigation of the thermal noise of MOS transistors under analog and RF operating conditions', Proc 32nd European Solid-State Device Research Conference (ESSDERC), 2002.
    4. 4)
    5. 5)
      • http://www.semiconductors.philips.com/Philips_models.
    6. 6)
    7. 7)
      • A.J. Scholten , L.F. Tiemeijer , R. van Langevelde , R.J. Havens , A.T.A. Zegers-van Duijnhoven , V.C. Venezia . Noise modeling for RF CMOS circuit simulation. IEEE Trans. Electron Devices
    8. 8)
      • Y. Tsividis . (1999) Operation and modeling of the MOS transistor.
    9. 9)
      • Koolen, M.A.C.M., Geelen, J.A.M., Versleijen, M.P.J.G.: `An improved de-embedding technique for on-wafer high frequency characterization', Proc. Bipolar Circuits and Technology Meeting, 1991, Minneapolis, MN, USA, p. 188–191.
    10. 10)
      • Scholten, A.J., Tromp, H.J., Tiemeijer, L.F., van Langevelde, R., Havens, R.J., de Vreede, P.W.H., Roes, R.F.M., Woerlee, P.H., Montree, A.H., Klaassen, D.B.M.: `Accurate thermal noise model for deep-submicron CMOS', Int. Electron Devices Meeting Tech. Dig., 1999, p. 155–158.
    11. 11)
    12. 12)
      • A.A. Abidi . High-frequency noise measurements on FET's with small dimensions. IEEE Trans. Electron Devices , 1801 - 1805
    13. 13)
    14. 14)
      • R.P. Jindal . Noise associated with distributed resistance of MOSFET gate structures in integrated circuits. IEEE Trans. Electron Devices , 1505 - 1509
    15. 15)
      • Scholten, A.J., Tiemeijer, L.F., de Vreede, P.W.H., Klaassen, D.B.M.: `A large signal non-quasi-static MOS model for RF circuit simulation', Int. Electron Devices Meeting Tech. Dig., 1999, p. 163–166.
    16. 16)
      • Scholten, A.J., Tiemeijer, L.F., van Langevelde, R., Havens, R.J., Zegers-van Duijnhoven, A.T.A., de Kort, R., Venezia, V.C., Klaassen, D.B.M.: `Compact modeling of noise for RF CMOS circuit design', Presented at 1st Int. Symp. on Fluctuations and Noise, 2003, Santa Fe, NM, USA.
    17. 17)
      • Venezia, V.C., Scholten, A.J., Detcheverry, C., Boots, H., Jeamsaksiri, W., Grau, L., Klaassen, D.B.M., Velghe, R.M.D.A., Havens, R.J., Tiemeijer, L.F.: `The RF potential of high performance 100 nm CMOS technology', Proc. 32nd European Solid-State Device Research Conf. (ESSDERC), 2002, Firenze, Italy, p. 491–494.
    18. 18)
    19. 19)
      • F.M. Klaassen , J. Prins . Thermal noise of MOS transistors. Philips Res. Rep. , 504 - 514
    20. 20)
      • H. Hillbrand , P.R. Russer . An efficient method for computer aided noise analysis of linear amplifiernetworks. IEEE Trans. Circuits Syst. , 4 , 235 - 238
    21. 21)
    22. 22)
      • Holloway, T.C.: `0.18 μm CMOS technology for high-performance, low-power, and RF applications', Dig. Tech. Papers VLSI Symp., 1997, Kyoto, Japan, p. 13–14.
    23. 23)
      • Tiemeijer, L.F., Klaassen, D.B.M.: `Geometry scaling of the substrate loss of RF MOSFETs', Proc. 28th European Solid-State Device Research Conf. (ESSDERC), 1998, p. 480–483.
    24. 24)
    25. 25)
    26. 26)
      • Morifuji, E., Momose, H.S., Oghuro, T., Yoshitomi, T., Kimijama, H., Matsuoka, F., Kinugawa, M., Katsumata, Y., Iwai, H.: `Future perspective and scaling down roadmap for RF CMOS', Dig. Tech. Papers VLSI Symp., 1999, Kyoto, Japan, p. 163–164.
    27. 27)
      • Scholten, A.J., van Langevelde, R., Tiemeijer, L.F., Havens, R.J., Klaassen, D.B.M.: `Compact MOS modelling for RF CMOS circuit simulation', Proc. Simulation of Semiconductor Processes and Devices (SISPAD), 2001, Athens, Greece, p. 194–201.
    28. 28)
      • Knoblinger, G.: `RF noise of deep-submicron MOSFETs: extraction and modeling', Proc. 31st European Solid-State Device Research Conf. (ESSDERC), 2001, p. 331–334.
    29. 29)
      • Klein, P.: `An analytical thermal noise model of deep submicron MOSFET's for circuit simulation with emphasis on the BSIM3v3 SPICE model', Proc. 28th European Solid-State Device Research Conf. (ESSDERC), 1998, p. 460–463.
    30. 30)
      • A. van der Ziel , E.R. Chenette . Noise in solid state devices. Adv. Electron. Electron Phys.
    31. 31)
      • Jamal Deen, M., Chen, C.H., Cheng, Y.: `MOSFET modeling for low noise, RF circuit design', Proc IEEE Custom Integrated Circuits Conf. (CICC), 2002, p. 201–208.
    32. 32)
      • van Langevelde, R., Scholten, A.J., Havens, R.J., Tiemeijer, L.F., Klaassen, D.B.M.: `Advanced compact MOS modelling', Proc. 31st European Solid-State Device Research Conf. (ESSDERC), 2001, p. 81–88.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20040373
Loading

Related content

content/journals/10.1049/ip-cds_20040373
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading