Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Stability of microcrystalline silicon for thin film solar cell applications

Stability of microcrystalline silicon for thin film solar cell applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The development of microcrystalline silicon (μc-Si:H) for solar cells has made good progress with efficiencies better than those of amorphous silicon (a-Si:H) devices. Of particular interest is the absence of light-induced degradation in highly crystalline μc-Si:H. However, the highest efficiencies are obtained with material which may still include a-Si:H regions and light-induced changes may be expected in such material. On the other hand, material of high crystallinity is susceptible to in-diffusion of atmospheric gases which, through adsorption or oxidation, affect the electronic transport. Investigations are presented of such effects concerning the stability of μc-Si:H films and solar cells prepared by plasma-enhanced chemical vapour deposition and hot wire chemical vapour deposition.

References

    1. 1)
      • L. Houben , M. Luysberg , P. Hapke , R. Carius , F. Finger , H. Wagner . Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A , 1447 - 1460
    2. 2)
      • Wang, C., Lucovsky, G.: `Intrinsic microcrystalline silicon deposited by remote PECVD: a new thin-film photovoltaic material', Proc. 21st IEEE Photovoltaic Specialists Conf., 1990, Kissikimee, FL, USA, p. 1614–1618.
    3. 3)
    4. 4)
      • J. Müller , F. Finger , R. Carius , H. Wagner . Electron spin resonance investigation of electronic states in hydrogenated microcrystalline silicon. Phys. Rev. B , 11666 - 11677
    5. 5)
      • S. Vepřek , Z. Iqpal , R.O. Kühne , P. Capezzuto , F.-A. Sarott , J.K. Gimzewski . Properties of microcrystalline silicon. IV. Electrical conductivity, electron spin resonance and the effect of gas adsorption. J. Phys. C, Solid State Phys. , 2641 - 264
    6. 6)
      • M. Luysberg , P. Hapke , R. Carius , F. Finger . Structure and growth of hydrogenated microcrystalline silicon: investigation by transmission electron microscopy and Raman spectroscopy of films grown at different plasma excitation frequencies. Philos. Mag. A , 31 - 47
    7. 7)
      • D.L. Staebler , C.R. Wronski . Reversible conductivity charge in discharge-produced amorphous Si. Appl. Phys. Lett. , 292 - 294
    8. 8)
    9. 9)
      • M. Luysberg , C. Scholten , L. Houben , R. Carius , F. Finger , O. Vetterl . Structural properties of microcrystalline Si solar cells. Mater. Res. Soc. Symp. Proc.
    10. 10)
    11. 11)
      • O. Vetterl , R. Carius , L. Houben , C. Scholten , M. Luysberg , A. Lambertz , F. Finger , H. Wagner . (2000) Mater. Res. Soc. Symp. Proc..
    12. 12)
      • J.K. Rath . Sol. Energy Mater. Sol. Cells. Sol. Energy Mater. Sol. Cells
    13. 13)
      • R.W. Collins , B.Y. Yang . In situ ellipsometry of thin-film deposition: Implications for amorphous and microcrystalline Si growth. J. Vac. Sci. Technol. B , 1155 - 1164
    14. 14)
      • D. Will , C. Lerner , W. Fuhs , K. Lips . Transport and recombination channels in undoped microcrystalline silicon studied by ESR and EDMR. Mat. Res. Soc. Symp. Proc. , 361 - 366
    15. 15)
      • A. Mück , U. Zastrow , O. Vetterl , B. Rech , A. Benninghoven , P. Bertrand , H.-N. Migeon , H.W. Werner . (2000) , Secondary ion mass spectrometry SIMS XII.
    16. 16)
      • F. Finger , J. Müller , C. Malten , H. Wagner . Electronic states in hydrogenated microcrystalline silicon. Philos. Mag. B , 805 - 830
    17. 17)
      • F. Finger , S. Klein , T. Dylla , A.L. Baia Neto , O. Vetterl , R. Carius . Defects in microcrystalline silicon prepared with hot wire CVD. Mater. Res. Soc. Symp. Proc.
    18. 18)
      • S. Klein , F. Finger , R. Carius , T. Dylla , B. Rech , M. Grimm , L. Houben , M. Stutzmann . Intrinsic microcrystalline silicon by hot-wire CVD for thin film solar cells. Thin Solid Films
    19. 19)
      • C. Ross , J. Herion , H. Wagner . Nucleation and growth analysis of microcrystalline silicon by scanning probe microscopy: substrate dependence, local structural and electronic properties of as-grown surfaces. J. Non-Cryst. Solids , 69 - 73
    20. 20)
      • T. Brammer , H. Stiebig . Defect density and recombination lifetime in microcrystalline silicon absorbers of highly efficient thin-film solar cells determined by numerical device simulations. J. Appl. Phys.
    21. 21)
      • F. Shimura . (1994) Semiconductors and Semimetals, Oxygen in silicon.
    22. 22)
    23. 23)
    24. 24)
      • S. Klein , F. Finger , R. Carius , B. Rech , L. Houben , M. Luysberg , M. Stutzmann . High efficiency thin film solar cells with intrinsic microcrystalline silicon prepared by hot wire CVD. Mater. Res. Soc. Symp. Proc.
    25. 25)
      • O. Vetterl , A. Gross , T. Jana , S. Ray , A. Lambertz , R. Carius , F. Finger . Changes in electric and optical properties of intrinsic microcrystalline silicon upon variation of the structural composition. J. Non-Cryst. Solids. , 772 - 777
    26. 26)
      • L. Houben , C. Scholten , M. Luysberg , O. Vetterl , F. Finger , R. Carius . Growth of microcrystalline nip Si solar cells: role of local epitaxy. J. Non-Cryst. Solids , 1189 - 1193
    27. 27)
      • P. Kanschat , K. Lips , R. Brüggemann , A. Hierzenberger , I. Sieber , W. Fuhs . (1998) Mater. Res. Soc. Symp. Proc..
    28. 28)
      • M. Stutzmann . The defect density in amorphous silicon. Philos. Mag. B , 531 - 546
    29. 29)
      • P. Torres , J. Meier , R. Flückiger , U. Kroll , J.A. Anna Selvan , H. Keppner , A. Shah , S.D. Littlewood , I.E. Kelly , P. Giannoules . Device grade microcrystalline silicon owing to reduced oxygen contamination. Appl. Phys. Lett. , 1373 - 1375
    30. 30)
      • N. Nickel , M. Rakel . Hydrogen-induced metastable changes in the electrical conductivity of microcrystalline silicon. Phys. Rev. B , 041301/1 - 4
    31. 31)
      • N. Kniffler , B. Schröder , J. Geiger . Vibrational spectroscopy of hydrogenated evaporated amorphous silicon films. J. Non-Cryst. Solids , 153 - 163
    32. 32)
      • T. Kamei , T. Wada , A. Matsuda . (2001) Mater. Res. Soc. Symp. Proc..
    33. 33)
      • S. Klein , F. Finger , R. Carius , H. Wagner , M. Stutzmann . Intrinsic amorphous and microcrystalline silicon by hot-wire-deposition for thin film solar cell applications. Thin Solid Films , 305 - 309
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20030636
Loading

Related content

content/journals/10.1049/ip-cds_20030636
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address