New materials and processes for flat panel X-ray detectors

Access Full Text

New materials and processes for flat panel X-ray detectors

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings - Circuits, Devices and Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Flat panel X-ray imagers using amorphous silicon active matrix addressing have been introduced to the medical imaging market at sizes up to 40×40 cm and with up to 10 million pixels. Some new technology developments, which can further increase the performance of these devices, are described. High atomic number polycrystalline X-ray photoconductors can operate near the theoretical sensitivity and at reasonably low bias voltages. The higher sensitivity obtained in HgI2 allows single-photon detection, which opens up new imaging opportunities. Another approach to improve sensitivity is to integrate an amplifier at the pixel level, which requires laser-recrystallised polysilicon transistors. A pixel-level source follower amplifier is shown to have enough gain to overcome other noise sources. A three-dimensional device structure is needed to accommodate the pixel electronics, and so the sensor is deposited on top of the electronics, separated by a thick passivation layer. Future possible detector technologies based on printing and organic semiconductors are discussed.

Inspec keywords: X-ray imaging; photoconducting materials; mercury compounds; X-ray detection; biomedical imaging; semiconductor materials; silicon; thin film transistors

Other keywords: X-ray photoconductors; source follower amplifier; printing; 3D device structure; single-photon detection; organic semiconductors; Si; high atomic number polycrystalline photoconductors; medical imaging; pixel level amplifier; laser-recrystallised polysilicon transistors; 40 cm; flat panel X-ray detectors; HgI2

Subjects: Image sensors; X-ray, gamma-ray instruments and techniques; Patient diagnostic methods and instrumentation; X-ray and gamma-ray equipment; Photoconduction and photovoltaic effects; photodielectric effects; X-ray techniques: radiography and computed tomography (biomedical imaging/measurement); Photoconducting materials and properties; X-rays and particle beams (medical uses)

References

    1. 1)
      • W. Zhao , J.A. Rowlands . A large solid-state detector for radiology using amorphous selenium. Proc. SPIE-Int. Soc. Opt. Eng.
    2. 2)
      • S. Wagner , H. Gleskova , J.C. Sturm , Z. Suo , R.A. Street . (2000) Novel processing technology for macroelectronics, Technology and applications of amorphous silicon.
    3. 3)
    4. 4)
    5. 5)
      • J.B. Boyce , J.P. Lu , J. Ho , R.A. Street , K. Van Schuylenbergh , Y. Wang . Pulsed laser crystallization of amorphous silicon for polysilicon flat-panel imagers. J. Non-Cryst. Solids
    6. 6)
      • S. Tokuda , H. Kishihara , S. Adachi , T. Sato , Y. Izumi , O. Teranuma , Y. Yamane , S. Yamada . Large area deposition of a poly-crystalline CdZnTe film and its applicability to X-ray panel detectors with superior sensitivity. Proc. SPIE-Int. Soc. Opt. Eng.
    7. 7)
      • Physics of medical imaging. Proc. SPIE-Int. Soc. Opt. Eng.
    8. 8)
    9. 9)
      • T. Tsukada , R.A. Street . (2000) Active-matrix liquid-crystal displays, Technology and applications of amorphous silicon.
    10. 10)
      • D.L. Lee , L.K. Cheung , L.S. Jeromin . A new digital detector for projection radiography. Proc. SPIE-Int. Soc. Opt. Eng.
    11. 11)
      • R.A. Street , S.E. Ready , K. Van Schuylenbergh , J. Ho , J.B. Boyce , P. Nylen , K.S. Shah , L. Melekhov , H. Hermon . Comparison of PbI2 and HgI2 for direct detection active matrix X-ray image sensors. J. Appl. Phys.
    12. 12)
    13. 13)
      • M. Schieber , A. Zuck , M. Braiman , J. Nissenbaum , R. Turchetta , W. Dulinski , D. Husson , J.L. Riester . IEEE Trans. Nucl. Sci.. IEEE Trans. Nucl. Sci.
    14. 14)
      • L.E. Antonuk , J. Boudry , W. Huang , D.L. McShan , E.J. Morton , J. Yorkston , M.J. Longo , R.A. Street . Demonstration of megavoltage and diagnostic X-ray imaging with hydrogenated amorphous silicon arrays. Med. Phy. , 1455 - 1466
    15. 15)
      • R.A. Street , R.A. Street . (2000) Large area image sensor arrays, Technology and applications of amorphous silicon.
    16. 16)
    17. 17)
      • K.S. Shah , P. Bennett , L. Cirignano , Y. Dmitriyev , M. Klugerman , K. Mandal , L.P. Moy , R.A. Street . (1998) Mater. Res. Soc. Symp. Proc..
    18. 18)
      • R.A. Street , S. Nelson , L. Antonuk , V. Perez Mendez . (1990) Mater. Res. Soc. Symp. Proc..
    19. 19)
      • S. Uchikoga . Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays. MRS Bull. , 881 - 885
    20. 20)
      • K.S. Shah , F. Olschner , L.P. Moy , P. Bennett , M. Misra , J. Zhang , M.R. Squillante , J.C. Lund . Lead iodide X-ray detection systems. Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. , 266 - 270
    21. 21)
      • R.A. Street , S.E. Ready , L. Melekhov , J. Ho , A. Zuck , B. Breen . Approaching the theoretical X-ray sensitivity with HgI2 direct detection image sensors. Proc. SPIE-Int. Soc. Opt. Eng.
    22. 22)
      • U. Scheibel , N. Conrads , N. Jung , M. Weibrecht , H. Wieczorek , T. Zaengel , M.J. Powell , I.D. French , C. Glasse . Fluoroscopic X-ray imaging with amorphous silicon thin-film transistors. Proc. SPIE-Int. Soc. Opt. Eng.
    23. 23)
      • Microelectronics and assembly. Proc. SPIE-Int. Soc. Opt. Eng.
    24. 24)
      • J.P. Lu , K. van Schuylenbergh , R.T. Fulks , J. Ho , Y. Wang , R. Lau , P. Nylen , P. Mei , M. Mulato , J.B. Boyce , R.A. Street . Flat panel imagers based on excimer laser annealed, poly-Si thin film transistor technology. Mater. Res. Soc. Symp. Proc.
    25. 25)
    26. 26)
      • J.H. Siewardsen , D.A. Jaffray . Cone-beam computed tomography with a flat-panel imager: magnitude and effects of X-ray scatter. Med. Phys. , 220 - 231
    27. 27)
      • M. Schieber , H. Hermon , A. Zuck , A. Vilensky , L. Melekhov , R. Shatunovsky , R. Turketa . (1999) Proc. SPIE-Int. Soc. Opt. Eng..
    28. 28)
      • K. Hecht . (1932) Z. Phys..
    29. 29)
      • W. Zhao , I. Blevis , S. Germann , J.A. Rowlands , D. Waechter , Z. Huang . A flat panel detector for digital radiography using active matrix readout of amorphous silicon. Proc. SPIE-Int. Soc. Opt. Eng.
    30. 30)
      • J.B. Boyce , P. Mei , R.A. Street . (2000) Laser crystallization for polycrystalline silicon device applications, Technology and applications of amorphous silicon.
    31. 31)
      • J.T. Rahn , F. Lemmi , P. Mei , J.P. Lu , J.B. Boyce , R.A. Street , R.B. Apte , K.F. Ready , K.F. Van Schuylenbergh , P. Nylen , J. Ho , R.T. Fulks , R. Lau , R.L. Weisfield . High resolution, high fill factor a-Si:H sensor arrays for optical imaging. Mater. Res. Soc. Symp. Proc.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-cds_20030555
Loading

Related content

content/journals/10.1049/ip-cds_20030555
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading