http://iet.metastore.ingenta.com
1887

Period-doubling route to chaos in an electrical power system

Period-doubling route to chaos in an electrical power system

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IEE Proceedings C (Generation, Transmission and Distribution) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This in-depth introduction to chaos in an electrical power system presents techniques for recognising and classifying chaotic behaviour. A cascade of period-doubling bifurcation, which leads to chaos, is observed. Results on a sample power system are presented. The practical significance of chaos for power system operation is also discussed.

References

    1. 1)
      • B.-L. Hao . (1990) , Chaos II.
    2. 2)
      • N. Koppel , R.B. Washburn . Chaotic motions in the two-degree-of-freedom swing equations. IEEE Trans. , 738 - 746
    3. 3)
      • P. Varaiya , F.F. Wu , R.-L. Chen . Direct methods for transient stability analysis of power systems: recent results. Proc. IEEE , 1703 - 1715
    4. 4)
      • B.Z. Kaplan , D. Yardeni . Possible chaotic phenomenon in a three-phase oscillator. IEEE Trans. , 8 , 1148 - 1151
    5. 5)
      • M.A. Nayfeh , A.M.A. Hamdan , A.H. Nayfeh . Chaos and instability in a power system—primary resonant case. Nonlinear dynamics , 313 - 339
    6. 6)
      • Lai, L.L., Jaing, Z.Y., Jaing, R.H.: `Chaotic phenomena in power systems', Proceedings of international conference Control'91, 1991, UK, Edinburgh.
    7. 7)
      • V. Ajjarapu , B. Lee . Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. IEEE Trans. , 1 , 424 - 431
    8. 8)
      • Ajjarapu, V., Lee, B.: `Nonlinear oscillations and voltage collapse phenomena in an electrical power system', Proceedings of 22nd North American Power Symposium, 1990, AL, USA, Auburn.
    9. 9)
      • Chiang, H.D., Dobson, I., Thomas, R.J., Thorp, J.S., Fekih-Ahmed, L.: `On voltage collapse in electric power systems', IEEE PICA conference, 1989, Seattle, WA, USA.
    10. 10)
      • Abed, E.H., Alexander, J.C., Wang, H., Hamdan, A.M.A., Lee, H.C.: `Dynamic bifurcations in a power system model exhibiting voltage collapse', Technical research report, 1992.
    11. 11)
      • Chiang, H.D., Liu, C.W., Varaiya, P.P., Wu, F.F., Lauby, M.G.: `Chaos in a simple power system', paper 92WM151-1PWRS, IEEE PES winter meeting.
    12. 12)
      • V. Ajjarapu , B. Lee . Discussion of Reference 11 in. IEEE Trans.
    13. 13)
      • B.D. Hassard , N.D. Kazarinoff , Y.H. Wan . (1981) , Theory and applications of Hopf bifurcation.
    14. 14)
      • J. Guckenheimer , P.J. Holmes . (1983) , Nonlinear oscillation, dynamical systems, and bifurcations of vector fields.
    15. 15)
      • R. Seydel . (1988) , From equilibrium to chaos.
    16. 16)
      • V.I. Arnold . (1983) , Geometrical methods in the theory of ordinary dif ferential equations.
    17. 17)
      • R.M. May . Simple mathematical models with very complicated dynamics. Nature , 459 - 467
    18. 18)
      • M.J. Feigenbaum . Quantitative universality for a class of non linear transformations. J. Stat. Phys. , 1 , 25 - 52
    19. 19)
      • Walve, K.: `Modeling of power system components at severe disturbances', paper 38-18, CIGRE international conference on Large high-voltage electric systems, 1986, p. 38–18.
    20. 20)
      • Abed, E.H., Hamdan, A., Lee, H.C., Parlos, A.: `On bifurcations in power system models and voltage collapse', Proceedings of 27th IEEE conference on Decision and control, 1990, Honolulu, HI, USA, p. 3014, 3015.
    21. 21)
      • E.H. Abed . Nonlinear oscillations in power systems. Int. J. Electr. Power Energy Syst. , 37 - 43
    22. 22)
      • J.C. Alexander . Oscillatory solution of a model system of non linear swing equation. Int. J. Electr. Power Energy Syst. , 130 - 136
    23. 23)
      • Rajagopalan, C., Sauer, P.W., Pai, M.A.: `Analysis of voltage control system exhibiting Hopf bifurcation', Proceedings of 28th IEEE conference on Decision and control, December 1989, Tampa, FL, USA, p. 332–335.
    24. 24)
      • Tamura, Y.: `A scenario of voltage collapse In a power system with induction motor loads with a cascaded transition of bifurcation', Proceedings of workshop on bulk power system voltage phenomena, Voltage stability and security, August 1991, USA, Deck Creek Lake, MD, p. 332–335.
    25. 25)
      • : `Summary of interaction dynamics task force's survey on voltage collapse phenomenon, North American Electric Reliability Council', NERC Report, August 1991, Survey of the voltage collapse phenomenon.
    26. 26)
      • J. Sotomayor , P.M. Peixoto . (1973) Generic bifurcations of dynamical systems, Dynamical systems.
    27. 27)
      • E. Doedel . (1986) , AUTO, Software for continuation and bifurcation problems in ordinary differential equations.
http://iet.metastore.ingenta.com/content/journals/10.1049/ip-c.1993.0071
Loading

Related content

content/journals/10.1049/ip-c.1993.0071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address