Your browser does not support JavaScript!

Probabilistic load flow by a multilinear simulation algorithm

Probabilistic load flow by a multilinear simulation algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IEE Proceedings C (Generation, Transmission and Distribution) — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Load flow analysis is undoubtedly the most useful method of designing and operating power systems. The input data necessary for these studies are best described by random variables, considering the probabilistic nature of loads, generation and networks. The effects of uncertainties on the steady-state behaviour of power systems can be evaluated by a stochastic or probabilistic load flow (PLF) analysis. This paper presents a new method for obtaining the PLF solution, by combining Monte Carlo simulation techniques and linearised power flow equations for different system load levels. The performance of the proposed algorithm is illustrated through the IEEE 14-busbar test system, and also through its application in part of the Brazilian network.

Related content

This is a required field
Please enter a valid email address