Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hybrid detection algorithm for online faulty sensors identification in wireless sensor networks

Wireless sensor network (WSN) is a developed wireless network consisting of some connected sensor nodes. The WSN is employed in many fields such as military, industrial, and environmental monitoring applications. These nodes are equipped with sensors for sensing the environmental variables such as temperature, humidity, wind speed, and so on. In most applications, WSN is positioned in remote places and harsh environments, where they are most probably exposed to faults. Hence, faulty sensor identification is one of the most fundamental tasks to be considered in WSN. This study suggests a hybrid methodology based on mutual information change (MIC) and wavelet transform (WT) for faulty sensor identification. The MIC method is suggested to study correlation among sensors, while the WT technique is proposed for self-sensor detection. WT is suitable for analysing non-stationary signals into approximation and detail coefficients. The suggested algorithm performance is investigated by applying a real case study at an arbitrary location close to Cairo, Egypt. The results of each method are compared using the true positive rate (TPR), false negative rate, and accuracy measures. Obtained results have shown that combining MIC and WT techniques can achieve a higher TPR and accuracy reach 100% in most fault types.

References

    1. 1)
      • 26. Zidi, S., Moulahi, T., Alaya, B.: ‘Fault detection in wireless sensor networks through svm classifier’, IEEE Sens. J., 2017, 18, (1), pp. 340347.
    2. 2)
      • 1. Akyildiz, I.F., Vuran, M.C.: ‘Wireless sensor networks’ (John Wiley & Sons, Singapore, 2010).
    3. 3)
      • 23. Yu, T., Akhtar, A.M., Wang, X., et al: ‘Temporal and spatial correlation based distributed fault detection in wireless sensor networks’. 2015 IEEE 28th Canadian Conf. on Electrical and Computer Engineering (CCECE), Halifax, Canada, 2015.
    4. 4)
      • 12. Zhang, Z., Mehmood, A., Shu, L., et al: ‘A survey on fault diagnosis in wireless sensor networks’, IEEE Access, 2018, 6, pp. 1134911364.
    5. 5)
      • 9. Spoorthi, K., Snehanshu, S., Archana, M.: ‘Discrete path selection and entropy based sensor node failure detection in wireless sensor networks’, Cybern. Inf. Technol., 2016, 16, (3), pp. 137153.
    6. 6)
      • 38. Gao, W., Kannan, S., Oh, S., et al: ‘Estimating mutual information for discrete-continuous mixtures’. Advances in Neural Information Processing Systems, Long Beach, USA, 2017.
    7. 7)
      • 46. Sifuzzaman, M., Islam, M., Ali, M.: ‘Application of wavelet transform and its advantages compared to Fourier transform’, 2009.
    8. 8)
      • 37. Cover, T.M., Thomas, J.A.: ‘Elements of information theory’ (John Wiley & Sons, Canada, 2012).
    9. 9)
      • 29. Germán-Salló, Z., Strnad, G.: ‘Signal processing methods in fault detection in manufacturing systems’, Procedia Manuf., 2018, 22, pp. 613620.
    10. 10)
      • 8. Shankar, A., Jaisankar, N., Khan, M.S., et al: ‘Hybrid model for security-aware cluster head selection in wireless sensor networks’, IET Wirel. Sens. Syst., 2018, 9, (2), pp. 6876.
    11. 11)
      • 31. Ray, P.K., Mohanty, A., Panigrahi, B.K., et al: ‘Modified wavelet transform based fault analysis in a solar photovoltaic system’, Optik, 2018, 168, pp. 754763.
    12. 12)
      • 40. Shabanian, M., Hosseini, S.H.: ‘Sensor data fusion using mutual information algorithm’, Ciência e Natura, 2015, 37, (6–2), pp. 146155.
    13. 13)
      • 39. Bermudez-Edo, M., Barnaghi, P., Moessner, K.: ‘Analysing real world data streams with spatio-temporal correlations: entropy vs. Pearson correlation’, Autom. Constr., 2018, 88, pp. 87100.
    14. 14)
      • 44. Ameid, T., Menacer, A., Talhaoui, H., et al: ‘Discrete wavelet transform and energy eigen value for rotor bars fault detection in Variable speed field-oriented control of induction motor drive’, ISA Trans., 2018, 79, pp. 217231.
    15. 15)
      • 32. Mohammadnian, Y., Amraee, T., Soroudi, A.: ‘Fault detection in distribution networks in presence of distributed generations using a data mining–driven wavelet transform’, IET Smart Grid, 2019, 2, (2), pp. 163171.
    16. 16)
      • 24. Zhang, H., Liu, J., Kato, N.: ‘Threshold tuning-based wearable sensor fault detection for reliable medical monitoring using Bayesian network model’, IEEE Syst. J., 2016, 12, (2), pp. 18861896.
    17. 17)
      • 43. Primer, A., Burrus, C.S., Gopinath, R.A.: ‘Introduction to wavelets and wavelet transforms’ (Prentice Hall, Upper Saddle River, NJ, 1998).
    18. 18)
      • 7. Medina-García, J., Sánchez-Rodríguez, T., Galán, J., et al: ‘A wireless sensor system for real-time monitoring and fault detection of motor arrays’, Sensors, 2017, 17, (3), p. 469.
    19. 19)
      • 27. Noshad, Z., Javaid, N., Saba, T., et al: ‘Fault detection in wireless sensor networks through the random forest classifier’, Sensors, 2019, 19, (7), p. 1568.
    20. 20)
      • 19. Kappaganthu, K., Nataraj, C.: ‘Feature selection for fault detection in rolling element bearings using mutual information’, J. Vib. Acoust., 2011, 133, (6), pp. 061001-1061001-11.
    21. 21)
      • 5. Pradhan, N., Sharma, K., Singh, V.K.: ‘A survey on hierarchical clustering algorithm for wireless sensor networks’, Int. J. Comput. Appl., 2016, 134, (4), pp. 3035.
    22. 22)
      • 45. Addison, P.S.: ‘The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance’ (CRC Press, New York, USA, 2017).
    23. 23)
      • 36. Dai, H., Liu, Y., Guo, F.: ‘A malicious node detection algorithm based on principle of maximum entropy in WSNs’, J. Netw., 2012, 7, (9), pp. 13761383.
    24. 24)
      • 10. Shaikh, A., Pathan, S.: ‘Research on wireless sensor network technology’, Int. J. Inf. Educ. Technol., 2012, 2, (5), pp. 476479.
    25. 25)
      • 25. Waskita, A., Suhartanto, H., Handoko, L.T.: ‘A performance study of anomaly detection using entropy method’. 2016 International Conference on Computer, Control, Informatics and its Applications (IC3INA), IEEE, 2016.
    26. 26)
      • 2. Boukerche, A., Sun, P.: ‘Connectivity and coverage based protocols for wireless sensor networks’, Ad Hoc Netw., 2018, 80, pp. 5469.
    27. 27)
      • 47. Kim, I.-S.: ‘Fault detection algorithm of the photovoltaic system using wavelet transform’. India Int. Conf. on Power Electronics 2010 (IICPE2010), New Delhi, India, 2011.
    28. 28)
      • 50. Postalcioğlu, S., Erkan, K., Bolat, E.D.: ‘Application of discrete wavelet transform to fault detection’. Proc. 10th WSEAS Int. Conf. on Systems, World Scientific and Engineering Academy and Society (WSEAS), 2006.
    29. 29)
      • 33. Siripanadorn, S., Hattagam, W., Teaumroong, N.: ‘Anomaly detection in wireless sensor networks using self-organizing map and wavelets’, Int. J. Commun., 2010, 4, (3), pp. 7483.
    30. 30)
      • 49. Vahidi, B., Ghaffarzadeh, N., Hosseinian, S.H.: ‘An approach to detection of high impedance fault using discrete wavelet transform and artificial neural networks’, Simulation, 2010, 86, (4), pp. 203215.
    31. 31)
      • 35. Gray, R.M.: ‘Entropy and information theory’ (Springer Science & Business Media, Springer, New York, USA, 2011).
    32. 32)
      • 42. Kim, I.-S.: ‘On-line fault detection algorithm of a photovoltaic system using wavelet transform’, Sol. Energy, 2016, 126, pp. 137145.
    33. 33)
      • 41. Mehrjou, M.R., Mariun, N., Karami, M., et al: ‘Wireless sensors system for broken rotor bar fault monitoring using wavelet analysis’ in IOP Conference Series MSE (Eds.): ‘IOP Conference Series: Materials Science and Engineering’ (IOP Publishing, Malaysia, 2015), p. 012029 (1–10).
    34. 34)
      • 15. Wang, L., Wu, L., Guan, Y., et al: ‘Online sensor fault detection based on an improved strong tracking filter’, Sensors, 2015, 15, (2), pp. 45784591.
    35. 35)
      • 30. Ray, P.K., Panigrahi, B., Rout, P., et al: ‘Detection of faults in power system using wavelet transform and independent component analysis’. Computer, Communication and Electrical Technology: Proc. Int. Conf. on Advancement of Computer Communication and Electrical Technology (ACCET 2016), Murshidabad, India, 2017.
    36. 36)
      • 3. Krishna, C.R., Sivalingam, M., Znati, T.: ‘Wireless sensor networks’ (Springer Publication, New York, USA, 2004).
    37. 37)
      • 18. Joshi, A., Deignan, P., Meckl, P., et al: ‘Information theoretic fault detection’. Proc. 2005 American Control Conf., 2005.
    38. 38)
      • 21. Kraemer, P., Fritzen, C.P.: ‘Sensor fault identification using autoregressive models and the mutual information concept’, in Garibaldi, L., Garibaldi, C., Holford, K., et al (Eds.): ‘Key engineering materials’ (Trans Tech Publ, Switzerland, 2007), pp. 387392.
    39. 39)
      • 6. Afsar, M.M., Tayarani-N, M.-H.: ‘Clustering in sensor networks: a literature survey’, J. Netw. Comput. Appl., 2014, 46, pp. 198226.
    40. 40)
      • 14. Manisha, M., Nandal, D.: ‘Fault detection in wireless sensor networks’, IPASJ Int. J. Comput. Sci., 2015, 3, (3), pp. 510.
    41. 41)
      • 4. Banerjee, T., Xie, B., Agrawal, D.P.: ‘Fault tolerant multiple event detection in a wireless sensor network’, J. Parallel Distrib. Comput., 2008, 68, (9), pp. 12221234.
    42. 42)
      • 11. Sharma, S., Kumar, D., Kishore, K.: ‘Wireless sensor networks-a review on topologies and node architecture’, Int. J. Comput. Sci. Eng., 2013, 1, (2), pp. 1925.
    43. 43)
      • 52. DePold, H., Siegel, J., Hull, J.: ‘Metrics for evaluating the accuracy of diagnostic fault detection systems’. ASME Turbo Expo 2004: Power for Land, Sea, and Air, American Society of Mechanical Engineers Digital Collection, Vienna, Austria, 2004.
    44. 44)
      • 13. He, W., Qiao, P.-L., Zhou, Z.-J., et al: ‘A new belief-rule-based method for fault diagnosis of wireless sensor network’, IEEE Access, 2018, 6, pp. 94049419.
    45. 45)
      • 51. Borkhade, A.D.: ‘Transmission line fault detection using wavelet transform’, Int. J. Rec. Innov. Trends Comput. Commun., 2014, 2, (10), pp. 31383142.
    46. 46)
      • 17. Salim, O.M., Dorrah, H.T., Hassan, M.A.: ‘Wind speed estimation based on a novel multivariate Weibull distribution’, IET Renew. Power Gener., 2019, 13, (15), pp. 27622773.
    47. 47)
      • 34. Shannon, C.E.: ‘A mathematical theory of communication’, Bell Syst. Tech. J., 1948, 27, (3), pp. 379423.
    48. 48)
      • 20. Lucke, M., Mei, X., Stief, A., et al: ‘Variable selection for fault detection and identification based on mutual information of alarm series’. IFAC (International Federation of Automatic Control), 2019.
    49. 49)
      • 48. Chen, J., Phung, B., Zhang, D., et al: ‘Arcing current features extraction using wavelet transform’. Proc. 2014 Int. Symp. on Electrical Insulating Materials, Niigata City, Japan, 2014.
    50. 50)
      • 28. Chen, J., Phung, T., Blackburn, T., et al: ‘Detection of high impedance faults using current transformers for sensing and identification based on features extracted using wavelet transform’, IET Gener. Transm. Distrib., 2016, 10, (12), pp. 29902998.
    51. 51)
      • 16. Kshirsagar, R.V., Jirapure, B.: ‘A survey on fault detection and fault tolerance in wireless sensor networks’. IJCA Proc. on Int. Conf. on Benchmarks in Engineering Science and Technology, Maharashtra, India, 2012.
    52. 52)
      • 22. Bazan, G.H., Scalassara, P.R., Endo, W., et al: ‘Stator fault analysis of three-phase induction motors using information measures and artificial neural networks’, Electr. Power Syst. Res., 2017, 143, pp. 347356.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2020.0053
Loading

Related content

content/journals/10.1049/iet-wss.2020.0053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address