access icon openaccess Performance enhancement of IEEE 802.15.4 by employing RTS/CTS and frame concatenation

IEEE 802.15.4 has been widely accepted as the de facto standard for wireless sensor networks (WSNs). However, as in their current solutions for medium access control (MAC) sub-layer protocols, channel efficiency has a margin for improvement, in this study, the authors evaluate the IEEE 802.15.4 MAC sub-layer performance by proposing to use the request-/clear-to-send (RTS/CTS) combined with frame concatenation and block acknowledgement (BACK) mechanism to optimise the channel use. The proposed solutions are studied in a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under channel environments without/with transmission errors for both the chirp spread spectrum and direct sequence spread spectrum physical layers for the 2.4 GHz Industrial, Scientific and Medical band. Simulation results successfully verify the authors’ proposed analytical model. For more than seven TX (aggregated frames) all the MAC sub-layer protocols employing RTS/CTS with frame concatenation (including sensor BACK MAC) allow for optimising channel use in WSNs, corresponding to 18–74% improvement in the maximum average throughput and minimum average delay, together with 3.3–14.1% decrease in energy consumption.

Inspec keywords: mathematical analysis; wireless channels; spread spectrum communication; aggregation; access protocols; code division multiple access; wireless sensor networks; Zigbee

Other keywords: medium access control sublayer protocols; IEEE 802.15.4 standard; chirp spread spectrum; frame concatenation; BACK mechanism; frequency 2.4 GHz; wireless sensor networks; clear-to-send; direct sequence spread spectrum physical layers; RTS-CTS; sensor BACK MAC sublayer protocols; frame aggregation; WSN; single-rate frame aggregation; channel efficiency; MAC sublayer protocols; request-to-send; single-destination frame aggregation; block acknowledgement mechanism; Industrial, Scientific and Medical band

Subjects: Multiple access communication; Protocols; Wireless sensor networks; Mathematical analysis; Protocols; Mathematical analysis; Computer networks and techniques

References

    1. 1)
      • 28. Latre, B., Mil, P.D., Moerman, I., et al: ‘Maximum throughput and minimum delay in IEEE 802.15.4’. Int. Conf. on Mobile Ad-Hoc and Sensor Networks, Wuhan, People's Republic of China, 2005, pp. 866876.
    2. 2)
      • 21. ‘Calculating 802.15.4 data rates’. Available at http://www.jennic.com/files/supportfiles/JN-AN1035%20Calcula%2082-15-4%20Data%20Rates-1v0.pdf, accessed on January 2014.
    3. 3)
      • 31. Healy, M., Newe, T., Lewis, E.: ‘Efficiently securing data on a wireless sensor network’, J. Phys., Conf. Ser., Sens. Appl. XIV, 2007, 76, (1), p. 012063.
    4. 4)
      • 5. LAN/MAN Standards Committee. Part 15.4: ‘Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs)’, IEEE Std. 802.15.4, 2011.
    5. 5)
      • 23. ‘IEEE 802.15 Working Group for WPAN’. Available at http://www.ieee802.org/15/, accessed on December 2019.
    6. 6)
      • 22. Barroca, N., Velez, F.J., Chatzimisios, P.: ‘Block acknowledgment mechanisms for the optimization of channel use in wireless sensor networks’. Proc. of the 24th Annual IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, London, UK, September 2013, pp. 15701575.
    7. 7)
      • 9. Xiao, Y.: ‘IEEE 802.11 performance enhancement via concatenation and piggyback mechanisms’, IEEE Trans. Wirel. Commun., 2005, 4, (5), pp. 21822192.
    8. 8)
      • 20. Sun, M., Sun, K., Zou, Y.: ‘Analysis and improvement for 802.15.4 multi-hop network’. Proc. of Int. Conf. on Communications and Mobile Computing, Kunming, Yunnan, China, November 2009, pp. 5256.
    9. 9)
      • 19. Zheng, J., Lee, J.M.: ‘A comprehensive performance study of IEEE 802.15.4’, Sens. Netw. Oper., 2006, 4, pp. 218237.
    10. 10)
      • 26. Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: ‘Effectiveness of RTS/CTS handshake in IEEE 802.11a wireless LANs’, IEE Electron. Lett., 2004, 40, (14), pp. 915916.
    11. 11)
      • 18. Buratti, C., Verdone, R.: ‘Performance analysis of IEEE 802.15.4 non beacon-enabled mode’, IEEE Trans. Veh. Technol., 2009, 58, (7), pp. 16.
    12. 12)
      • 29. Chowdhury, M.S., Ullah, N., Kabir, M.H., et al: ‘Throughput, delay and bandwidth efficiency of IEEE 802.15.4a using CSS PHY’. Proc. of Int. Conf. on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, November 2010, pp. 158163.
    13. 13)
      • 17. Velez, F.J., Borges, L.M., Barroca, N., et al: ‘Two innovative energy efficient IEEE 802.15. 4 MAC sub-layer protocols with packet concatenation: employing RTS/CTS and multichannel scheduled channel polling’, in Velez, F.J., Derogarian, F. (Eds.): ‘Wearable technologies and wireless body sensor networks for healthcare’, Book Series on E-health Technologies, 11 (The IET, London, UK, 2019), pp. 241288.
    14. 14)
      • 8. Cao, X., Chen, J., Cheng, Y., et al: ‘An analytical MAC model for IEEE 802.15. 4 enabled wireless networks with periodic traffic’, IEEE Trans. Wirel. Commun., 2015, 14, (10), pp. 52615273.
    15. 15)
      • 10. Xiao, Y.: ‘IEEE 802.11n: enhancements for higher throughput in wireless LANs’, IEEE Wirel. Commun., 2005, 12, (6), pp. 8291.
    16. 16)
      • 14. ‘Capturing of ambient intelligence for beyond 3G mobile communication systems through wireless sensor networks: e-sense’. Available at http://www.ist-esense.org/, accessed on January 2014.
    17. 17)
      • 16. Barroca, N., Borges, L.M., Velez, F.J., et al: ‘Block acknowledgment in IEEE 802.15. 4 by employing DSSS and CSS PHY layers’. Proc. of Globecom Workshops (GC Wkshps), Austin, Texas, USA, December 2014, pp. 759764.
    18. 18)
      • 4. Huang, P., Xiao, L., Soltani, S., et al: ‘The evolution of MAC protocols in wireless sensor networks: a survey’, IEEE Commun. Surv. Tutorials, 2012, 15, (1), pp. 101120.
    19. 19)
      • 30. ‘OMNeT++ network simulation framework’. Available at http://www.omnetpp.org/, accessed on September 2013.
    20. 20)
      • 3. Tsai, H.-P., Yang, D.-N., Chen, M.-S.: ‘Mining group movement patterns for tracking moving objects efficiently’, IEEE Trans. Knowl. Data Eng., 2011, 23, (11), pp. 266281.
    21. 21)
      • 2. Wang, W., Hempel, M., Peng, D., et al: ‘On energy efficient encryption for video streaming in wireless sensor networks’, IEEE Trans. Multimed., 2010, 12, (5), pp. 417426.
    22. 22)
      • 7. Borges, L.M., Velez, F.J., Lebres, A. S.: ‘Survey on the characterization and classification of wireless sensor network applications’, IEEE Commun. Surv. Tutorials, 2015, 16, (4), pp. 18601890.
    23. 23)
      • 12. Barroca, N., Borges, L.M., Velez, F.J., et al: ‘Two innovative energy efficient IEEE 802.15.4 MAC sub-layer protocols with packet concatenation: employing RTS/CTS and multi-channel scheduled channel polling’. Contribution in the IEEE 802.15 Wireless Next Generation Standing Committee (SCwng) for Wireless Personal Area Networks (WPANs), Dallas Texas, USA, November 2013.
    24. 24)
      • 27. ‘MiXiM framework’. Available at http://sourceforge.net/apps/trac/mixim/, accessed on January 2014.
    25. 25)
      • 6. On World: ‘Zigbee and 802.15.4 shipments to reach 2.5 billion by 2020’. Available at http://onworld.com/news/ZigBee-and-802.15.4-Shipments-to-Reach-2.5-Billion-by-2020.html, accessed on June 2015.
    26. 26)
      • 13. Mainwaring, A., Culler, D., Polastre, J., et al: ‘Wireless sensor networks for habitat monitoring’. Proc. of the 1st ACM Int. Workshop on Wireless Sensor Networks and Applications (WSNA ‘02), 2002, New York, NY, USA, September 2002, pp. 8897.
    27. 27)
      • 11. Duan, J., Zhuang, Y., Ma, L.: ‘An adaptive RTS/CTS mechanism in IEEE 802.15.4 for multi-hop networks’. Prof. of 2012 Int. Conf. on Computational Problem-Solving (ICCP), Leshan, China, October 2012, pp. 155159.
    28. 28)
      • 25. Xiao, Y., Rosdahl, J.: ‘Performance analysis and enhancement for the current and future IEEE 802.11 MAC protocols’, ACM SIGMOBILE Mob. Comput. Commun. Rev. (MC2R), Spec. Issue Wirel. Home Netw., 2003, 7, (2), pp. 619.
    29. 29)
      • 15. Barroca, N., Borges, L.M., Velez, F.J., et al: ‘IEEE 802.15. 4 MAC layer performance enhancement by employing RTS/CTS combined with packet concatenation’. Proc. of IEEE Int. Conf. on Communications, Sydney, Australia, 2014, pp. 466471.
    30. 30)
      • 1. Mascareas, D., Flynn, E., Farrar, C., et al: ‘A mobile host approach for wireless powering and interrogation of structural health monitoring sensor networks’, IEEE Sens. J., 2009, 12, (9), pp. 17191726.
    31. 31)
      • 24. Rousselot, J., Decotignie, J.-D., Aoun, M., et al: ‘Accurate timeliness simulations for real-time wireless sensor networks’. Proc. of the Third UKSim European Symp. on Computer Modeling and Simulation, Neuchatel, Switzerland, November 2009, pp. 476481.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2019.0003
Loading

Related content

content/journals/10.1049/iet-wss.2019.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading