Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Maximising energy efficiency for direct communication links in wireless body area networks

Maximising energy efficiency for direct communication links in wireless body area networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Energy efficiency is a fundamental aspect for wireless body area networks (WBANs) due to the limited battery capacity and miniaturisation of sensor nodes. Prolonging the lifespan of a WBAN depends mostly on maximising the energy efficiency. WBAN systems operate under conflicting requirements of energy and spectrum efficiency. In this study, the two metrics of energy and spectrum efficiency for direct communication links for in-body and on-body sensor nodes are analysed. A general device-to-device communication model was adapted to WBAN. Optimal transmission power values to achieve maximum energy efficiency for in-body and on-body communication links are found. With reference to a maximum power level of 1.5 W compliant with the Federal Communications Commission for WBAN, it is also deduced that for on-body communication, decreasing maximum possible spectrum efficiency by 33% for medical devices operating in 400–450 and 950–956 MHz would improve energy efficiency by 75 times. Moreover, by decreasing spectrum efficiency by 38.3 and 48% leads to an increase in energy efficiency by 45.3 and 39.3 times in 2.4–2.5 and 3.1–10.6 GHz frequency bands, respectively. This trade-off is significant for medical applications having strict energy requirements.

References

    1. 1)
      • 5. Cao, H., Leung, V., Chow, C., et al: ‘Enabling technologies for wireless body area networks: a survey and outlook’. IEEE Commun. Mag., 47, (12), 2009, pp. 110.
    2. 2)
      • 27. Cotton, S. L., D'Errico, R., Oestges, C.: ‘A review of radio channel models for body centric communications’, Radio Sci., 2014, 49, (6), pp. 371388.
    3. 3)
      • 13. Jung, B. H., Akbar, R. U., Sung, D.K.: ‘Throughput, energy consumption, and energy efficiency of IEEE 802.15.6 body area network (BAN) MAC protocol’. IEEE 23rd Int. Symp. on Personal, Indoor and Mobile Radio Communications – (PIMRC), Sydney, Australia, September 2012.
    4. 4)
      • 18. Xiong, C., Li, G. Y., Zhang, S., et al: ‘Energy- and spectral-efficiency tradeoff in downlink OFDMA networks’, IEEE Trans. Wirel. Commun., 2011, 10, (11), pp. 38743886.
    5. 5)
      • 15. Karvonen, H., Iinatti, . J., Hämäläinen, M.: ‘A cross-layer energy efficiency optimization model for WBAN using IR-UWB transceivers’. Telecommun. Syst., 2014, 58, (2), pp. 165177.
    6. 6)
      • 11. Yi, C., Wang, L., Li, Y.: ‘Energy efficient transmission approach for WBAN based on threshold distance’, IEEE Sens. J., 2015, 15, (9), pp. 51335141.
    7. 7)
      • 25. Smith, D. B., Miniutti, D., Lamahewa, T. A., et al: ‘Propagation models for body-area networks: a survey and new outlook’, IEEE Antennas Propag. Mag., 2014, 55, (5), pp. 97117.
    8. 8)
      • 20. Abouei, J., Brown, D., Plataniotis, K., et al: ‘Energy efficiency and reliability in wireless biomedical implant systems’, IEEE Trans. Inf. Technol. Biomed., 2011, 15, (3), pp. 456466.
    9. 9)
      • 4. Keong, H. C., Thotahewa, S. K. M., Yuce, M. R.: ‘Transmit-only ultra wide band body sensors and collision analysis’, IEEE Sens. J., 2013, 13, (5), pp. 19491958.
    10. 10)
      • 24. Tatsis, G., Christofilakis, V., Votis, C., et al: ‘Experimental measurements of UWB channel’. Proc. Second Pan-Hellenic Conf. on Electronics and Telecommunications – PACET'12, Thessaloniki, Greece, 16–18 March 2012.
    11. 11)
      • 30. Cui, S., Goldsmith, A.J., Bahai, A.: ‘Energy-constrained modulation optimization’, IEEE Trans. Wirel. Commun., 2005, 4, (5), pp. 23492360.
    12. 12)
      • 28. Yazdandoost, K. Y., Sayrafian-Pour, K.: ‘Channel model for body area network (BAN)’. IEEE, 2009.
    13. 13)
      • 14. Elias, J., Mehaoua, A.: ‘Energy-aware topology design for wireless body area networks’. IEEE Int. Conf. on Communications (ICC), Ottawa, Canada, June 2012.
    14. 14)
      • 7. Patel, M., Wang, J.: ‘Applications, challenges, and prospective in emerging body area networking technologies’, IEEE Wirel. Commun. Mag., 2010, 17, (1), pp. 8088.
    15. 15)
      • 34. Alam, M. M., Hamida, E. B.: ‘Towards accurate mobility and radio link modeling for IEEE 802.15.6 wearable body sensor networks’. IEEE 10th Int. Conf. on Wireless and Mobile Computing, Networking and Communications (WiMob), Larnaca, Cyprus, October 2014.
    16. 16)
      • 33. Fort, A., Desset, C., Wambacq, P., et al: ‘Indoor body-area channel model for narrowband communications’, IET Microw. Antennas Propag., 2007, 1, (6), pp. 11971203.
    17. 17)
      • 21. Wei, L., Hu, R. Q., Qian, Y., et al: ‘Energy efficiency and spectrum efficiency of multihop device-to-device communications underlaying cellular networks’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 367380.
    18. 18)
      • 1. Raveendranathan, N., Galzarano, S., Loseu, V., et al: ‘From modeling to implementation of virtual sensors in body sensor networks’, IEEE Sens. J., 2011, 12, (3), pp. 583593.
    19. 19)
      • 35. Gonzalez, E., Pefia, R., Rosales, C. V., et al: ‘Survey of WBSNs for pre-hospital assistance: trends to maximise network lifetime and video transmission techniques’, Sensors, 2015, 15, pp. 1199312021.
    20. 20)
      • 17. Reusens, E., Joseph, W., Latré, B., et al: ‘Characterization of on-body communication channel and energy efficient topology design for wireless body area networks’, IEEE Trans. Inf. Technol. Biomed., 2009, 13, (6), pp. 933945.
    21. 21)
      • 2. Wu, W. H., Bui, A. A., Batalin, M. A., et al: ‘MEDIC: medical embedded device for individualized care’, Artif. Intell. Med., 2008, 42, (2), pp. 137152.
    22. 22)
      • 8. Rashmi, , Kumari, V.: ‘A study on wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation’, Int. J. Adv. Res. Comput. Commun. Eng., 2017, 6, (1), pp. 403405.
    23. 23)
      • 9. Callavari, R., Martelli, F., Rosini, R., et al: ‘A survey on wireless body area networks: technologies and design challenges’, IEEE Commun. Surv. Tutor., 2014, 16, (3), pp. 16351657.
    24. 24)
      • 31. Khan, T., Raahemifar, K.: ‘A low power current reused quadrature VCO for biomedical applications’. IEEE Int. Symp. on Circuits and Systems, Taipei, Taiwan, May 2009.
    25. 25)
      • 12. Chen, Y., Zhang, S., Xu, S., et al: ‘Fundamental trade-offs on green wireless networks’, IEEE Commun. Mag., 2011, 49, (6), pp. 3037.
    26. 26)
      • 23. Chronopoulos, S. K., Tatsis, G., Kostarakis, P.: ‘Turbo coded OFDM with large number of subcarriers’, J. Signal Inf. Process.2012, 3, (2), pp. 161168.
    27. 27)
      • 26. Synthia, M.: ‘Impacts of human body shadowing in wireless body-centric communications’, Int. J. Fut. Gener. Commun. Netw., 2016, 9, (6), pp. 191200.
    28. 28)
      • 29. Aoyagi, T., Takada, J.-I., Takizawa, K., et al: ‘Channel models for wearable and implantable WBANs’, July 2008.
    29. 29)
      • 10. Wang, L., Wang, P., Yi, C., et al: ‘Energy consumption optimization based on transmission distance for wireless on-body communication’. 2013 Int. Conf. on Wireless Communications and Signal Processing, Hangzhou, China, October 2013.
    30. 30)
      • 16. Li, Y., Bakkaloglu, B., Chakrabarti, C.: ‘A system level energy model and energy-quality evaluation for integrated transceiver front-ends’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2007, 15, pp. 90103.
    31. 31)
      • 19. Verdú, S.: ‘Spectral efficiency in the wideband regime’, IEEE Trans. Inf. Theory, 2002, 48, (6), pp. 13191343.
    32. 32)
      • 6. Fourati, L. C.: ‘Wireless body area network and healthcare monitoring system’, 2014.
    33. 33)
      • 32. Sayrafian-Pour, K., Yang, W.-B., Hagedorn, J., et al: ‘A statistical path loss model for medical implant communication channels’. IEEE 20th Int. Symp. on Personal, Indoor and Mobile Radio Communications, Tokyo, Japan, September 2009.
    34. 34)
      • 22. Chronopoulos, S. K., Tatsis, G., Kostarakis, P.: ‘Turbo codes – a new PCCC design’, Commun. Netw., 2011, 3, pp. 229234.
    35. 35)
      • 3. Poon, C. C. Y., Zhang, Y.-T., Bao, S.-D.: ‘A novel biometrics method to secure wireless body area sensor networks for telemedicine and m-health’, IEEE Commun. Mag., 2006, 44, (4), pp. 7381.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2018.5090
Loading

Related content

content/journals/10.1049/iet-wss.2018.5090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address