Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Band-stop filter sensor based on SIW cavity for the non-invasive measuring of blood glucose

Design and realisation of a substrate integrated waveguide (SIW) planar sensor for the non-invasive monitoring of blood glucose concentration (BGC) is described. The structure of the presented sensor is similar to a conventional band-stop filter. To produce a substantial and localised field enhancement in the sensing region by the SIW technology, the slots and interdigital arms on the upper conductor of the SIW cavity are utilised. Further, the fingertip is used as materials under test and its displacement and fingerprints effects are studied. The introduced sensor is then fabricated and measured. The evaluated results indicate that the developed sensor features improvement in both the fingertip positioning and fingerprints effects compared to the other work. Also, the frequency resonance shift of the proposed sensor observing the valuable enhancement of non-invasive BGC detection sensitivity is much more than the previous study.

References

    1. 1)
      • 12. Vrba, J., Vrba, D.: ‘A microwave metamaterial inspired sensor for non-invasive blood glucose monitoring’, Radioengineering, 2015, 24, (4), pp. 877884.
    2. 2)
      • 16. Chen, C. M., Xu, J., Yao, Y.: ‘SIW resonator humidity sensor based on layered black phosphorus’, Electron. Lett, 2017, 53, (4), pp. 249251.
    3. 3)
      • 11. Harnsoongnoen, S., Wanthong, A.: ‘Coplanar waveguide transmission line loaded with electric-LC resonator for determination of glucose concentration sensing’, IEEE Sensors J., 2017, 17, (6), pp. 16351640.
    4. 4)
      • 4. Benleulmi, A., Sama, N. Y., Ferrari, P., et al: ‘Substrate integrated waveguide phase shifter for hydrogen sensing’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (9), pp. 744746.
    5. 5)
      • 2. Haase, N. M. N., Fuge, G., Trieu, H. K., et al: ‘Miniaturized transmission-line sensor for broadband dielectric characterization of biological liquids and cell suspensions’, IEEE Trans. Microw. Theory Tech., 2015, 63, (10), pp. 30263033.
    6. 6)
      • 14. Ramzan, R., Omar, M., Siddiqui, O. F.: ‘Energy-tunneling dielectric sensor based on substrate integrated waveguides’, IEEE Sensors J., 2017, 17, (5), pp. 12641268.
    7. 7)
      • 5. Muhammed Shafi, K. T., Ansari, M. A. H., Jha, A. K., et al: ‘Design of SRR-based microwave sensor for characterization of magnetodielectric substrates’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (5), pp. 524526.
    8. 8)
      • 17. Eom, S., Memon, M.U., Lim, S.: ‘Frequency-switchable microfluidic CSRR-loaded QMSIW band-pass filter using a liquid metal alloy’, Sensors, 2017, 17, (4), pp. 110.
    9. 9)
      • 9. Turgul, V., Kale, I.: ‘Simulating the effects of skin thickness and fingerprints to highlight problems with non-invasive RF blood glucose sensing from fingertips’, IEEE Sensors J., 2017, 17, (22), pp. 75537560.
    10. 10)
      • 22. Ebrahimi, A., Withayachumnankul, W., Al-Sarawi, S. F., et al: ‘Compact dual-mode wideband filter based on complementary split-ring resonator’, IEEE Microw. Wirel. Compon. Lett., 2014, 24, (3), pp. 152154.
    11. 11)
      • 1. Karami, M., Rezaei, P., Kiani, S., et al: ‘Modified planar sensor for measuring dielectric constant of liquid materials’, Electron. Lett., 2017, 53, (19), pp. 13001302.
    12. 12)
      • 18. Muhammed Shafi, K. T., Jha, A. K., Akhtar, M. J.: ‘Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials’, IEEE Sensors J., 2017, 17, (17), pp. 54795486.
    13. 13)
      • 3. Zarifi, M. H., Farsinezhad, S., Shankar, K., et al: ‘Liquid sensing using active feedback assisted planar microwave resonator’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (9), pp. 621623.
    14. 14)
      • 19. Byford, J. A., Park, K. Y., Chahal, P.: ‘Metamaterial inspired periodic structure used for microfluidic sensing’. Electronic Components and Technology Conf. (ECTC), San Diego, CA, USA, July 2015, pp. 19972002.
    15. 15)
      • 23. Rusni, I. M., Ismail, A., Alhawari, A. R. H., et al: ‘An aligned-gap and centered-gap rectangular multiple split ring resonator for dielectric sensing applications’, Sensors, 2014, 14, (7), pp. 1313413148.
    16. 16)
      • 13. Withayachumnankul, W., Jaruwongrungsee, K., Tuantranont, A., et al: ‘Metamaterial-based microfluidic sensor for dielectric characterization’, Sens. Actuators A, 2013, 189, pp. 233237.
    17. 17)
      • 15. Chen, X. P., Wu, K.: ‘Substrate integrated waveguide filters: design techniques and structure innovations’, IEEE Microw. Mag., 2014, 15, (6), pp. 121133.
    18. 18)
      • 8. Turgul, V., Kale, I.: ‘Influence of fingerprints and finger positioning on accuracy of RF blood glucose measurement from fingertips’, Electron. Lett., 2017, 53, (4), pp. 218220.
    19. 19)
      • 20. Lobato-Morales, H., Corona-Chávez, A., Olvera-Cervantes, J. L., et al: ‘Wireless sensing of complex dielectric permittivity of liquids based on the RFID’, IEEE Trans. Microw. Theory Tech., 2014, 62, (9), pp. 21602167.
    20. 20)
      • 24. Nikawa, Y., Michiyama, T.: ‘Non-invasive measurement of blood-sugar level by reflection of millimetre-waves’. Asia-Pacific Microwave Conf., Yokohama, Japan, Dec 2006, pp. 4750.
    21. 21)
      • 21. Xu, J., Cui, Y., Xu, Z., et al: ‘Low phase noise oscillator based on complementary split-ring resonators loaded quarter-mode circular SIW cavity’, Electron. Lett., 2017, 53, (14), pp. 933935.
    22. 22)
      • 6. Jones, T. R., Zarifi, M. H., Daneshmand, M.: ‘Miniaturized quarter-mode substrate integrated cavity resonators for humidity sensing’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (7), pp. 612614.
    23. 23)
      • 10. Baghbani, R., Rad, M. A., Pourziad, A.: ‘Microwave sensor for non-invasive glucose measurements design and implementation of a novel linear’, IET Wirel. Sens. Syst., 2017, 5, (2), pp. 5157.
    24. 24)
      • 7. Adhikari, K. K., Kim, N. Y.: ‘Ultrahigh-sensitivity mediator-free biosensor based on a microfabricated microwave resonator for the detection of micromolar glucose concentrations’, IEEE Trans. Microw. Theory Tech., 2016, 64, (1), pp. 319327.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2018.5044
Loading

Related content

content/journals/10.1049/iet-wss.2018.5044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address