Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Comprehensive survey of the IoT open-source OSs

Comprehensive survey of the IoT open-source OSs

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Internet of things (IoT) has attracted a great deal of research and industry attention recently and is envisaged to support diverse emerging domains including smart cities, health informatics, and smart sensory platforms. Operating system (OS) support for IoT plays a pivotal role in developing scalable and interoperable applications that are reliable and efficient. IoT is implemented by both high-end and low-end devices that require OSs. Recently, the authors have witnessed a diversity of OSs emerging into the IoT environment to facilitate IoT deployments and developments. In this study, they present a comprehensive overview of the common and existing open-source OSs for IoT. Each OS is described in detail based on a set of designing and developmental aspects that they established. These aspects include architecture and kernel, programming model, scheduling, memory management, networking protocols support, simulator support, security, power consumption, and support for multimedia. They present a taxonomy of the current IoT open-source OSs. The objective of this survey is to provide a well-structured guide to developers and researchers to determine the most appropriate OS for each specific IoT devices/applications based on their functional and non-functional requirements. They remark that this is the first such tutorial style paper on IoT OSs.

References

    1. 1)
      • 44. Lajara, R., Pelegri-Sebastia, J., Solano, J.: ‘Power consumption analysis of operating systems for wireless sensor networks’, Sensors, 2010, 10, (6), pp. 58095826.
    2. 2)
      • 2. Mattern, F., Floerkemeier, C.: ‘From the internet of computers to the Internet of things’, in Sachs, K., Petrov, I., Guerrero, P. (Eds.): ‘From active data management to event-based systems and more’ (Springer, Berlin, Germany, 2010), vol. 33, (2), pp. 242259.
    3. 3)
      • 96. Lu, Z., Zhang, X., Sun, C.: ‘An embedded system with uClinux based on FPGA’. Proc. Pacific-Asia Wkshps on Computational Intelligence and Industrial Application (PACIIA), Wuhan, China, December 2008, pp. 691694.
    4. 4)
      • 71. Milinkovi, A., Milinković, S., Lazic, L., et al: ‘Choosing the right RTOS for IoT platform’, NFOTEH-JAHORINA, 2015, 14, (3), pp. 504509.
    5. 5)
      • 78. Hammad, M., Cook, J.: ‘Lightweight deployable software monitoring for sensor networks’. Proc. IEEE 18th Int. Conf. Computing Communications and Networks, Washington, D.C., USA, August 2009, pp. 16.
    6. 6)
      • 63. Tsiftes, N., Eriksson, J., Dunkels, A.: ‘Poster abstract: low-power wireless IPv6 routing with ContikiRPL’. Proc. Ninth ACM/IEEE Int. Conf. Information Processing in Sensor Networks, Stockholm, Sweden, April 2010, pp. 406407.
    7. 7)
      • 37. Deniz, U., Al-Turjman, F., Celik, G.: ‘An overview of Internet of things and wireless communications’. Proc. Int. Conf. Computer Science and Engineering (UBMK), Antalya, Turkey, October 2017, pp. 506509.
    8. 8)
      • 69. Baccelli, E., Hahm, O., Petersen, H., et al: ‘RIOT and the evolution of IoT operating systems and applications’, ERCIM News, April 2015, 101.
    9. 9)
      • 79. Ranjan, A., Sahu, H., Misra, P.: ‘A survey report on operating systems for tiny networked sensors’, arXiv preprint arXiv:1505.05269, May 2015.
    10. 10)
      • 39. AlTurjman, F., Alturjman, S.: ‘Confidential smart-sensing framework in the IoT era’, J. Supercomput., 2018, 74, (10), pp. 51875198.
    11. 11)
      • 103. Kiepert, J.: ‘Creating a Rraspberry Pi-based Beowulf cluster’, Boise State University, May 2013, pp. 117.
    12. 12)
      • 70. Petersen, H., Adjih, C., Hahm, O., et al: ‘IoT meets robotics-first steps, RIOT car, and perspectives’. Proc. ACM Int. Conf. Embedded Wireless Systems and Networks (EWSN), Graz, Austria, February 2016, pp. 269270.
    13. 13)
      • 35. Levis, P., Culler, D., Shenker, S., et al: ‘Trickle: a self-regulating algorithm for code propagation and maintenance in wireless sensor networks’. Proc. USENIX/ACM Symp. Networked System Design and Implementation (NSDI), San Francisco, CA, March 2004, pp. 1528.
    14. 14)
      • 93. Balsamo, D., Elboreini, A., Al-Hashimi, B., et al: ‘Exploring ARM Mbed support for transient computing in energy harvesting IoT systems’. Proc. Seventh IEEE Int. Wkshps Advances in Sensors and Interfaces, Vieste, Italy, June 2017, pp. 115120.
    15. 15)
      • 14. Internet of Things (IoT) Connected Devices Installed Base Worldwide from 2015 to 2025 (in billions). Available at https://www.statista.com/, accessed August 2017.
    16. 16)
      • 42. Xiong, L., Zhou, X., Liu, W.: ‘Research on the architecture of trusted security system based on the Internet of things’. Proc. Int. Conf. Intell. Computer Technology and Automation, Shenzhen, Guangdong, China, March 2011, pp. 11721175.
    17. 17)
      • 77. Gaur, P., Tahiliani, M.: ‘Operating systems for IoT devices: a critical survey’. Region 10 Symp. (TENSYMP), Ahmedabad, Pakistan, May 2015, pp. 3336.
    18. 18)
      • 102. Prasad, S., Mahalakshmi, P., Sunder, A., et al: ‘Smart surveillance monitoring system using Raspberry Pi and PIR sensor’, Int. J. Comput. Sci. Inf. Technol., 2014, 5, (6), pp. 71077109.
    19. 19)
      • 112. Android Platform Architecture. Available at https://developer.android.com/guide/platform/index.html, accessed on September 2017.
    20. 20)
      • 40. Atzori, L., Iera, A., Morabito, G.: ‘The Internet of things: a survey’, Comput. Netw., 2010, 54, (15), pp. 27872805.
    21. 21)
      • 25. Hahm, O., Baccelli, E., Petersen, H., et al: ‘Operating systems for low-end devices in the Internet of things: a survey’, IEEE Internet Things J., 2016, 3, (5), pp. 720734.
    22. 22)
      • 91. Mbed IoT Platform. Available at https://www.mbed.com/en/platform/, accessed on September 2017.
    23. 23)
      • 84. FreeRTOS. Available at http://www.freertos.org/, accessed on September 2017.
    24. 24)
      • 31. Dunkels, A., Groonvall, B., Voigt, T.: ‘ContikiVA lightweight and flexible operating system for tiny networked sensors’. Proc. Annual IEEE Int. Conf. Local Computer Network (LCN), Tampa, FL, USA, November 2004, pp. 455462.
    25. 25)
      • 55. Dunkels, A., Schmidt, O., Voigt, T., et al: ‘Protothreads: simplifying event-driven programming of memory-constrained embedded systems’. Proc. Int. Conf. Embedded Networked Sensor Systems, Boulder, CO, USA, October 2006, pp. 2942.
    26. 26)
      • 97. Wang, M., Liu, F.: ‘Research and implementation of uCLinux-based embedded browser’. Proc. Second IEEE Asia-Pacific Service Computing Conf., Tsukuba Science City, Japan, December 2007, pp. 504508.
    27. 27)
      • 34. Baccelli, E., Hahm, O., Günes, M., et al: ‘OS for the IoT – goals, challenges, and solutions, OS for the IoT – goals, challenges, and solutions’. Wkshps Interdisciplinaire sur la SÃl'curitÃl’ Globale (WISG), Troyes, France, January 2013, pp. 16.
    28. 28)
      • 48. Levis, P., Lee, N., Welsh, M., et al: ‘TOSSIM: accurate and scalable simulation of entire TinyOS applications’. Proc. Int. Conf. Embedded Networked Sensor Systems, CA, USA, November 2003, pp. 126137.
    29. 29)
      • 46. Al-Sakran, A., Qutqut, M., Almasalha, F., et al: ‘An overview of the Internet of things closed source operating systems’. Int. Wireless Communications and Mobile Computing Conf. (IWCMC), Limassol, Cyprus, June 2018.
    30. 30)
      • 101. Vujovic, V., Maksimovic, M.: ‘Raspberry Pi as a wireless sensor node: performances and constraints’. Proc. Int. Convention Information and Communication Technology Electronics and Microelectronics (MIPRO), Opatia, Croatia, May 2014, pp. 10131018.
    31. 31)
      • 29. Dunlap, G., King, S., Cinar, S., et al: ‘Revirt: enabling intrusion analysis through virtual-machine logging and replay’. Proc. Symp Operating Syst. Design and Implementation (OSDI), Seattle, USA, December 2002, pp. 211224.
    32. 32)
      • 83. Yang, C., Chih, H.: ‘An open source audio effect unit’. Proc. IEEE Int. Conf. Systems, Man, and Cybernetics (SMC), Budapest, Hungary, October 2016, pp. 638643.
    33. 33)
      • 57. Dunkels, A., Mottola., L, Tsiftes, N., et al: ‘The announcement layer: beacon coordination for the sensornet stack’. Proc. Wireless Sensor Networks Conf. (EWSN), Bonn, Germany, February 2011, pp. 211226.
    34. 34)
      • 68. Roussel, K., Song, Y., Zendra, O.: ‘RIOT OS paves the Way for implementation of high-performance MAC protocols’. Proc. Fourth Int. Conf. Sensor Networks (SENSORNETS), Angers, France, April 2015, pp. 514.
    35. 35)
      • 27. Farooq, M., Kunz, T.: ‘Operating systems for wireless sensor networks: a survey’, Sens. J., 2011, 11, (6), pp. 59005930.
    36. 36)
      • 53. Ma, H.: ‘Experimental evaluation of a video streaming system for wireless multimedia sensor networks’. Proc. Tenth IEEE IFIP Annual Mediterranean Ad Hoc Network Workshops, Sicily, Italy, August 2011, pp. 165170.
    37. 37)
      • 50. Hill, J., Culler, D., Horton, M., et al: ‘Mica: the commercialization of microsensor motes’, Sens. Mag., 2004, 19, pp. 4048.
    38. 38)
      • 1. Ma, H.: ‘Internet of things: objectives and scientific challenges’, J. Comput. Sci. Technol., 2011, 26, (6), pp. 919924.
    39. 39)
      • 21. Wang, L., Alexander, C.: ‘Big data analytics and cloud computing in Internet of things’, Amer. J. Inf. Sci. Comput. Eng., 2016, 2, (6), pp. 7078.
    40. 40)
      • 94. arm MBED. Available at https://www.mbed.com/, accessed on September 2017.
    41. 41)
      • 99. Teng, J., Tseng, C., Chen, Y., et al: ‘Integration of networked embedded systems into power equipment remote control and monitoring’. Proc. TENCON IEEE Region Conf., Chiang Mai, Thailand, November 2004, vol. 100, (3), pp. 566569.
    42. 42)
      • 56. Dunkels, A., Finne, N., Eriksson, J.: ‘Run-time dynamic linking for reprogramming wireless sensor networks’. Proc. Fourth ACM Conf. Embedded Networked Sensor Systems (Sensys), Boulder, CO, USA, October 2006, pp. 1528.
    43. 43)
      • 86. Johny, A., Jayasudha, J., Anurag, R.: ‘Security in automotive domain using secure socket layer’, Int. J. Eng. Innov. Technol., 2013, 3, (4), pp. 214219.
    44. 44)
      • 72. Baccelli, E., Hahm, O., Gunes, M., et al: ‘RIOT OS: towards an OS for the Internet of things’. Proc. 32nd IEEE Conf. Computing Communications (INFOCOM), Turin, Italy, April 2013, pp. 7980.
    45. 45)
      • 80. Deharbe, D., Galv'ao, S., Moreira, A.: ‘Formalizing FreeRTOS: first steps in formal methods: foundations and applications’. Proc. 12th Brazilian Symp. Formal Methods (SBMF), Gramado, Brazil, August 2009, pp. 101117.
    46. 46)
      • 3. Zhu, Q., Ruicong, W., Chen, Q., et al: ‘IoT gateway: bridging wireless sensor networks into internet of things’. Proc. IEEE/IFIP Eighth Int. Conf. Embedded Ubiquitous Comput. (EUC), Hong Kong, China, December 2010, pp. 347352.
    47. 47)
      • 89. An Operating System for Arduino. Available at https://www.arduino.cc/, accessed on September 2017.
    48. 48)
      • 59. Klauck, R., Kirsche, M.: ‘Bonjour Contiki: a case study of a DNS based discovery service for the Internet of things’. Proc. Int. Conf. Ad hoc, Mobile, and Wireless Networks (ADHOC-NOW), Berlin, Germany, June 2012, pp. 316329.
    49. 49)
      • 19. Roman, R., Zhou, J., Lopez, J.: ‘On the features and challenges of security and privacy in distributed Internet of things’, Comput. Netw., 2013, 57, (10), pp. 22662279.
    50. 50)
      • 24. Chen, S., Xu, H., Liu, D., et al: ‘A vision of IoT: applications, challenges, and opportunities with China perspective’, IEEE Internet Things J., 2014, 1, (4), pp. 349359.
    51. 51)
      • 32. Chien, T., Chan, H., Huu, T.: ‘A comparative study on operating system for wireless sensor networks’. Proc. Int. Conf. Advanced Computer Science and Information Syst., Jakarta, Indonesia, December 2011, pp. 7378.
    52. 52)
      • 18. Miorandi, D., Sicari, S., De Pellegrini, F., et al: ‘Internet of things: vision, applications and research challenges’, Ad Hoc Netw., 2012, 10, (7), pp. 14971516.
    53. 53)
      • 11. Cisco Visual Networking Index.: Global Mobile Data Traffic Forecast Update, 2016–2021. Available at https://www.cisco.com/.
    54. 54)
      • 36. Abdelsamea, M., Zorkany, M., Abdelkader, N.: ‘Real time operating systems for the Internet of things, vision, architecture and research directions’. Proc. World Symp. Computer Applications and Research, Cairo, Egypt, March 2016, pp. 7277.
    55. 55)
      • 108. Bagal, N., Pandita, S.: ‘A review: real-time wireless audio–video transmission’, Int. J. Emerg. Technol. Adv. Eng., 2015, 5, (4), pp. 168170.
    56. 56)
      • 104. Silva, S.: ‘A Linux microkernel based architecture for OPENCV in the Raspberry Pi device’, Int. J. Sci. Knowl. (IJSK), 2014, 5, (2), pp. 4452.
    57. 57)
      • 23. Qin, Z., Denker, G., Giannelli, C., et al: ‘A software defined networking architecture for the Internet-of-things’. Proc. IEEE Network Operations and Management Symp. (NOMS), Krakow, Poland, June 2014, pp. 19.
    58. 58)
      • 10. Why the Need for Special Operating Systems for IoT and Wearable Devices?Available at https://dzone.com/, accessed June 2017.
    59. 59)
      • 52. Casado, L., Tsigas, P.: ‘Contiki Sec: a secure network layer for wireless sensor networks under the Contiki operating system’. Proc. Nordic Conf. Secure IT Systems, New York, NY, USA, October 2009, pp. 133147.
    60. 60)
      • 51. Sruthi, M., Rajkumar, R.: ‘A study on development issues over IOT platforms, protocols and operating system’. Int. Conf. Innovations in Information Embedded and Communication Systems, Coimbatore, India, March 2016.
    61. 61)
      • 38. Sulyman, A., Oteafy, S., Hassanein, H.: ‘Expanding the cellular-IoT umbrella: an architectural approach’, IEEE Wirel. Commun., 2017, 24, (3), pp. 6671.
    62. 62)
      • 109. MartinFerna'ndez, F., CaballeroGil, P., CaballeroGil, C.: ‘Authentication based on non-interactive zero knowledge proofs for the Internet of things’, Sensors, 2016, 16, (1), p. 75.
    63. 63)
      • 12. Razzaque, M., Milojevic-Jevric, M., Palade, A., et al: ‘Middleware for Internet of things: a survey’, IEEE Internet Things J., 2016, 3, (1), pp. 7095.
    64. 64)
      • 33. Azure IoT device SDK for C. Available at https://docs.microsoft.com/en-us/azure/, accessed August 2017.
    65. 65)
      • 22. Sarkar, C., Nambi, A., Prasad, R., et al: ‘DIAT: a scalable distributed architecture for IoT’, IEEE Internet Things J., 2015, 2, (3), pp. 230239.
    66. 66)
      • 16. Tarkoma, S., Ailisto, H.: ‘The Internet of things program: the Finnish perspective’, IEEE Commun. Mag., 2013, 51, (3), pp. 1011.
    67. 67)
      • 90. Malche, T., Maheshwary, P.: ‘Harnessing the Internet of things (IoT): a review’, Int. J. Adv. Res. Comput. Sci. Softw. Eng., 2015, 5, (8), pp. 320323.
    68. 68)
      • 13. Roman, R., Najera, P., Lopez, J.: ‘Securing the Internet of things’, IEEE Comput. Netw., 2011, 44, (9), pp. 5158.
    69. 69)
      • 26. Silberschatz, A., Galvin, P., Gagne, G.: ‘Operating system concepts’ (Wiley, New York, USA, 2013, 9th edn.).
    70. 70)
      • 105. The MagPi Magazine. Available at https://www.raspberrypi.org/magpi/tutorials/, accessed on September 2017.
    71. 71)
      • 66. RIOT Documentation. Available at https://riot-os.org/api/, accessed on September 2017.
    72. 72)
      • 60. Kuladinithi, K., Bergmann, O., Pötsch, T., et al: ‘Implementation of CoAP and its application in transport logistics’. Proc. Wkshps on Extending the Internet to Low power and Lossy Networks, Chicago, IL, USA, April 2011, pp. 17.
    73. 73)
      • 28. Will, H., Schleiser, K., Schiller, J.: ‘A real-time kernel for wireless sensor networks employed in rescue scenarios’. Proc. IEEE Conf. Local Computer Networks (LCN), Zurich, Switzerland, October 2009, pp. 834841.
    74. 74)
      • 95. Nikkanen, K.: ‘Uclinux as an embedded solution’, Bachelor's thesis, Turku Polytechnic Institute, 2003.
    75. 75)
      • 62. Contiki.: The open source OS for the Internet of things. Available at http://www.contiki-os.org/, accessed on August 2017.
    76. 76)
      • 6. Islam, S., Kwak, D., Kabir, M., et al: ‘The Internet of things for health care: a comprehensive survey’, IEEE Access., 2015, 3, pp. 678708.
    77. 77)
      • 81. Andersson, K., Andersson, R.: ‘A comparison between FreeRTOS and RTLinux in embedded real-time systems’, Linkoping University, 2005.
    78. 78)
      • 54. Farooq, M., Aziz, S., Dogar, A.: ‘State of the art in wireless sensor networks operating systems: a survey’. Proc. Int. Conf. Future Generation Information Technology, Berlin, Heidelberg, December 2010, pp. 616631.
    79. 79)
      • 106. Murikipudi, A., Prakash, V., Vigneswaran, T.: ‘Performance analysis of real time operating system with general purpose operating system for mobile robotic system’, Indian J. Sci. Technol., 2015, 8, (19), pp. 16.
    80. 80)
      • 47. Levis, P., Madden, S., Polastre, J., et al: ‘TinyOS: an operating system for sensor networks’, in Weber, W., Rabaey, J., Aarts, E. (Eds.): ‘Ambient intelligence’, vol. 1 (Springer, New York, 2005), pp. 115148.
    81. 81)
      • 41. Perrig, A., Szewczyk, R., Wen, V.: ‘SPINS: security protocols for sensor networks’, Wirel. Netw., 2002, 5, (8), pp. 521534.
    82. 82)
      • 74. Huawei LiteOS. Available at http://www.huawei.com/, accessed on September 2017.
    83. 83)
      • 75. Vanitha, V., Palanisamy, V., Johnson, N., et al: ‘LiteOS based extended service oriented architecture for wireless sensor networks’, Int. J. Comput. Electr. Eng., 2010, 2, (3), pp. 432436.
    84. 84)
      • 107. Almasalha, F., Khokhar, A., Hasimoto-Beltran, R.: ‘Scalable encryption of variable length coded video bit streams’. Proc. IEEE 35th Conf. Local Computer Networks (LCN), Denver, CO, USA, October 2010, pp. 192195.
    85. 85)
      • 67. Emmanuel, B., Gündoğan, C., Hahm, O., et al: ‘RIOT: an open source operating system for low-end embedded devices in the IoT’, IEEE Internet Things J., 2018, doi: 10.1109/JIOT.2018.2815038.
    86. 86)
      • 45. Hamoudy, M., Qutqut, M., Almasalha, F.: ‘Video security in Internet of things: an overview’, Int. J. Comput. Sci. Netw. Secur. (IJCSNS), 2017, 17, (8), pp. 199255.
    87. 87)
      • 113. Akula, P., Yamuna, V., Ananda, C., et al: ‘Development of data logger for MAV using FREERTOS ON PIC32’, Int. J. Eng. Sci. Res. Technol., 2015, 4, (9), pp. 22779655.
    88. 88)
      • 4. Gartner Inc.: ‘Gartner says 8.4 billion connected ‘Things’ will be in use in 2017, up 31 percent from 2016’. Available at https://www.gartner.com/newsroom/id/3598917, accessed June 2017.
    89. 89)
      • 43. Demir, S., Al-Turjman, F.: ‘Energy scavenging methods for WBAN applications: a review’, IEEE Sens. J., 2018, 18, (16), pp. 64776488.
    90. 90)
      • 92. Persson, P., Angelsmark, O.: ‘Calvinâ merging cloud and IoT’. Proc. Int. Conf. Ambient Systems Networks and Technology (ANT), London, UK, June 2015, pp. 210217.
    91. 91)
      • 15. Lee, J., Sung, Y., Park, J.: ‘Lightweight sensor authentication scheme for energy efficiency in ubiquitous computing environments’, Sensors, 2016, 16, (12), pp. 20442059.
    92. 92)
      • 82. Hos'ek, P.: ‘Supporting real-time features in a hierarchical component system’, MSc thesis, Charles University, 2010.
    93. 93)
      • 8. Mainwaring, A., Polastre, J., Szewczyk, R., et al: ‘Wireless sensor networks for habitat monitoring’. Proc. ACM Int. Works Wireless Sensor Networks and Applications, Atlanta, GA, USA, September 2002, pp. 8897.
    94. 94)
      • 111. Android Things. Available at https://developer.android.com/things/, accessed on October 2017.
    95. 95)
      • 64. Munawar, W., Alizai, M., Landsiedel, O., et al: ‘Dynamic TinyOS: modular and transparent incremental code-updates for sensor networks’. Proc. IEEE Int. Conf. Commun. (ICC), Cape Town, South Africa, May 2010, pp. 16.
    96. 96)
      • 17. Al-Turjman, F., Alturjman, S.: ‘Context-sensitive access in industrial Internet of things (IIoT) healthcare applications’, IEEE Trans. Ind. Inf., 2018, 14, (6), pp. 27362744.
    97. 97)
      • 85. Kruger, C., Hancke, G.: ‘Implementing the Internet of things vision in industrial wireless sensor networks’. Proc. IEEE Int. Conf. Industrial Informatics, Budapest, Hungary, July 2014, pp. 627632.
    98. 98)
      • 73. Shang, W., Afanasyev, A., Zhang, L.: ‘The design and implementation of the NDN protocol stack for RIOT-OS’. Proc. IEEE Globecom Wkshps (GC Wkshps), Washington, DC, USA, December 2016, pp. 16.
    99. 99)
      • 76. Cao, Q., Abdelzaher, T., Stankovic, J., et al: ‘The LiteOS operating system: towards Unix-like abstractions for wireless sensor networks’. Proc. Int. Conf. Information Processing in Sensor Networks (IPSN), USA, April 2008, pp. 233244.
    100. 100)
      • 30. Bandyopadhyay, D., Sen, J.: ‘Internet of things: applications and challenges in technology and standardization’, Wirel. Pers. Commun., 2011, 58, (1), pp. 4959.
    101. 101)
      • 98. uClinux in the GDB/ARMulator. Available at http://www.uclinux.org/pub/uClinux/utilities/armulator/, accessed on September 2017.
    102. 102)
      • 9. Al-Fuqaha, A., Guizani, M., Mohammadi, M., et al: ‘Internet of things: a survey on enabling technologies, protocols, and applications’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 23472376.
    103. 103)
      • 61. Kovatsch, M., Duquennoy, S., Dunkels, A.: ‘BA low-power CoAP for contiki’. Proc. IEEE Eighth Int. Conf. Mobile Ad hoc and Sensor Syst. (MASS), Valencia, Spain, October 2011, pp. 855860.
    104. 104)
      • 20. Balakrishna, C.: ‘Enabling technologies for smart city services and applications’. Proc. IEEE Int. Conf. Next Generation Mobile Applications, Services and Technologies (NGMAST), Paris, France, September 2012, pp. 223227.
    105. 105)
      • 5. Sundmaeker, H., Guillemin, P., Friess, P., et al: ‘Vision and challenges for realizing the Internet of things’ (European Commission, Brussels, 2010).
    106. 106)
      • 58. Tsiftes, N., Dunkels, A., He, Z., et al: ‘Enabling large-scale storage in sensor networks with the coffee file system’. Proc. Int. Conf. Information Processing Sensor Networks, San Francisco, CA, USA, August 2009, pp. 349360.
    107. 107)
      • 7. Keoh, S., Kumar, S., Tschofenig, H.: ‘Securing the Internet of things: a standardization perspective’, IEEE Internet Things J., 2014, 1, (3), pp. 265275.
    108. 108)
      • 100. Kyle, D., Brustoloni, J.: ‘Uclinux: a Linux security module for trusted-computing-based usage controls enforcement’. Proc. ACM Wkshps on Scalable Trusted Computing, New York, NY, USA, November 2007, pp. 6370.
    109. 109)
      • 65. Kalyoncu, S.: ‘Wireless solutions and authentication mechanisms for Contiki based Internet of things networks’, PhD Thesis, Halmstad University, 2013.
    110. 110)
      • 49. Gay, D., Levis, P., Culler, D.: ‘Software design patterns for TinyOS’. Proc. ACM Conf. Languages, Compilers, and Tools for Embedded Syst., IL, USA, June 2005, vol. 40, pp. 4049.
    111. 111)
      • 88. Kordestani, M., Bourdoucen, H.: ‘A survey on embedded open source system software for the Internet of things’. Proc. Free and Open Source Software Conf., Muscat, Oman, February 2017, pp. 2732.
    112. 112)
      • 110. Amorim, V., Delabrida, S., Oliveira, R.: ‘A constraint-driven assessment of operating systems for wearable devices’. Proc. Computing Systems Engineering (SBESC), Joao Pessoa, Brazil, November 2016, pp. 150155.
    113. 113)
      • 87. Apache Mynewt OS. Available at https://mynewt.apache.org/, accessed on October 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2018.5033
Loading

Related content

content/journals/10.1049/iet-wss.2018.5033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address