http://iet.metastore.ingenta.com
1887

Using Internet of Things and biosensors technology for health applications

Using Internet of Things and biosensors technology for health applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The growing trend of ageing has created many challenges. One of these challenges is the rehabilitation of individuals who take time, resources and manpower. The motivation for this study is to propose an ontology-based automatic design methodology for use in intelligent rehabilitation systems in the Internet of things (IoTs). For interconnection, all health system resources in a network use IoT technology. In order to provide fast and effective rehabilitation for different patients, IoT is combined with ontology. The experimental results obtained from rehabilitation of the lower limbs show that the IoT-based rehabilitation system works properly and an ontology-based approach can help create an effective rehabilitation strategy, configure and quickly deploy all available resources with the requirements given. In this study, three types of biosensors have been selected. These biosensors are used for blood, saliva and breathing tests. The expansion of the growth and maturity of technology based on the Fisher-Pry model is based on patent and bibliometrics analysis. The analysis of intellectual property rights according to their number indicates that blood vital sensors reached their turning point in 2009, but the vital sensors of saliva and respiration will reach their turning point and maturity with a delay of 8–14 years.

References

    1. 1)
      • 1. Sheikh, N.J., Sheikh, O.: ‘Forecasting of biosensor technologies for emerging point of care and medical IoT applications using bibliometrics and patent analysis’. IEEE 2016 Portland Int. Conf. Management of Engineering and Technology (PICMET), Portland, USA, 2016, pp. 30823093.
    2. 2)
      • 2. Dohler, M., Ratti, C., Paraszczak, J., et al: ‘Smart cities’, IEEE Commun. Mag., 2013, 51, (6), pp. 7071.
    3. 3)
      • 3. Fan, Y.J., Yin, Y.H., Da Xu, L., et al: ‘IoT-based smart rehabilitation system’, IEEE Trans. Ind. Inf., 2014, 10, (2), pp. 15681577.
    4. 4)
      • 4. Feki, M.A., Kawsar, F., Boussard, M., et al: ‘The internet of things: the next technological revolution’, Computer, 2013, 46, (2), pp. 2425.
    5. 5)
      • 5. Li, X., Lu, R.X., Liang, X.H., et al: ‘Smart community: an internet of things application’, IEEE Commun. Mag., 2011, 49, (11), pp. 6875.
    6. 6)
      • 6. Atzori, L., Iera, A., Morabito, G.: ‘The internet of things: a survey’, Comput. Netw., 2010, 54, pp. 27872805.
    7. 7)
      • 7. Gershenfeld, N., Krikorian, R., Cohen, D.: ‘The internet of things’, Sci. Amer., 2004, 291, (4), pp. 7681.
    8. 8)
      • 8. Ding, Y.S., Jin, Y.L., Ren, L.H., et al: ‘An intelligent self-organization scheme for the internet of things’, IEEE Comput. Intell. Mag., 2013, 8, (3), pp. 4153.
    9. 9)
      • 9. Xu, L.D.: ‘Enterprise systems: state-of-the-art and future trends’, IEEE Trans. Ind. Informat., 2011, 7, (4), pp. 630640.
    10. 10)
      • 10. Chavoshi, A., Hamidi, H.: ‘Analysis of the essential factors for the adoption of mobile learning in higher education: a case study of students of the university of technology’, Telemat. Inform., 2018, 35, (4), pp. 10531070. doi: 10.1016/j.tele.2017.09.016.
    11. 11)
      • 11. Chevers, D., Mills, A.M., Duggan, E., et al: ‘An evaluation of software development practices among small firms in developing countries: a test of a simplified software process improvement model’, J. Glob. Inf. Manage., 2016, 24, (3), pp. 4570. doi:10.4018/JGIM.2016070103.
    12. 12)
      • 12. Bimonte, S., Sautot, L., Journaux, L., et al: ‘Multidimensional model design using data mining: a rapid prototyping methodology’, Int. J. Data Warehousing Mining, 2017, 13, (1), pp. 135. doi:10.4018/IJDWM.2017010101.
    13. 13)
      • 13. Esposito, C., Ficco, M.: ‘Recent developments on security and reliability in large-scale data processing with MapReduce’, Int. J. Data Warehousing Mining, 2016, 12, (1), pp. 4968. doi:10.4018/IJDWM.2016010104.
    14. 14)
      • 14. Gruber, T.: ‘Toward principles for the design of ontologies used for knowledge sharing’, Int. J. Hum. Comput. Stud., 1995, 43, (4–5), pp. 907928.
    15. 15)
      • 15. Gero, J.S., Kannengiesser, U.: ‘The situated function–behaviour– structure framework’, Des. Stud., 2004, 25, (4), pp. 373391.
    16. 16)
      • 16. Christophe, F., Bernard, A., Coatanéa, É.: ‘RFBS: A model for knowledge representation of conceptual design’, CIRP Ann. Manuf. Technol., 2010, 59, (1), pp. 155158.
    17. 17)
      • 17. Darlington, M.J., Culley, S.J.: ‘Investigating ontology development for engineering design support’, Adv. Eng. Informat., 2008, 22, (1), pp. 112134.
    18. 18)
      • 18. Hong, H., Yin, Y.: ‘Ontology-based human–machine integrated design method for ultra-precision grinding machine spindle’, J. Ind. Inf. Integr., 2016, 2, pp. 110. doi: 10.1016/j.jii.2016.04.003.
    19. 19)
      • 19. Nuñez, D., Borsato, M.: ‘An ontology-based model for prognostics and health management of machines’, J. Ind. Inf. Integr., 2017, 6, pp. 3346. doi: org/10.1016/j.jii.2017.02.006.
    20. 20)
      • 20. Hong, H., Yin, Y.: ‘Ontology-based conceptual design for ultra-precision hydrostatic guideways with human–machine interaction’, J. Ind. Inf. Integr., 2016, 2, pp. 1118. doi: 10.1016/j.jii.2016.04.002.
    21. 21)
      • 21. Li, S.C., Xu, L.D., Wang, X.H.: ‘Compressed sensing signal and data acquisition in wireless sensor networks and Internet of things’, IEEE Trans. Ind. Informat., 2013, 9, (4), pp. 21772186.
    22. 22)
      • 22. Wang, L., Xu, L., Bi, Z., et al: ‘Data cleaning for RFID and WSN integration’, IEEE Trans. Ind. Informat., 2014, 10, (1), pp. 408418.
    23. 23)
      • 23. Hashemzadeh, E.: ‘An approach to improve generation of association rules in order to be used in recommenders’, Int. J. Data Warehousing Mining, 2017, 13, (4), pp. 118. doi:10.4018/IJDWM.2017100101.
    24. 24)
      • 24. Mohammadi, K., Hamidi, H.: ‘Modeling fault tolerant and secure mobile agent execution in distributed systems’, Int. J. Intell. Inf. Technol., 2006, 2, (1), pp. 2136. doi:10.4018/jiit.2006010102.
    25. 25)
      • 25. Vafaei, A., Monadjemi, S.A.: ‘Algorithm based fault tolerant and check pointing for high performance computing systems’, J. Appl. Sci.., 2009, 9, (22), pp. 39473956.
    26. 26)
      • 26. Mousavi, R.: ‘Analysis and evaluation of a framework for sampling database in recommenders’, J. Glob. Inf. Manage., 2018, 26, (1), pp. 4157.
    27. 27)
      • 27. Yin, Y.H., Fan, Y.J., Xu, L.D.: ‘EMG & EPP-integrated human–machine interface between the paralyzed and rehabilitation exoskeleton’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (4), pp. 542549.
    28. 28)
      • 28. Fan, Y.J., Guo, Z., Yin, Y.H.: ‘EMG-based neuro-fuzzy controller for a parallel ankle exoskeleton with proprioception’, Int. J. Robot. Autom., 2011, 26, (4), pp. 450460.
    29. 29)
      • 29. Yin, Y.H., Guo, Z., Chen, X., et al: ‘Studies on biomechanics of skeletal muscle based on the working mechanism of myosin motors: An overview’, Chin. Sci. Bull., 2012, 57, (35), pp. 45334544.
    30. 30)
      • 30. Zhai, C., Zou, Z., Chen, Q., et al: ‘Delay-aware and reliability-aware contention-free MF-TDMA protocol for automated RFID monitoring in industrial IoT’, J. Ind. Inf. Integr., 2016, 3, pp. 819. doi: 10.1016/j.jii.2016.06.002.
    31. 31)
      • 31. Kim, J.: ‘A review of cyber-physical system research relevant to the emerging IT trends: industry 4.0, IoT, big data, and cloud computing’, J. Ind. Integr. Manage., 2017, 2, (3), p. 1750011. doi:10.1142/S2424862217500117.
    32. 32)
      • 32. Guo, Z., Yin, Y.H.: ‘A dynamic model of skeletal muscle based on collective behavior of myosin motors-biomechanics of skeletal muscle based on working mechanism of myosin motors (I)’, Sci. China Ser. E, 2012, 55, (6), pp. 15891595.
    33. 33)
      • 33. Yin, Y.H., Chen, X.: ‘Bio electrochemical control mechanism with variable-frequency regulation for skeletal muscle contraction-biomechanics of skeletal muscle based on the working mechanism of myosin motors (II)’, Sci. China Ser. E, 2012, 55, (8), pp. 21152125.
    34. 34)
      • 34. Hachem, S., Teixeira, T., Issarny, V.: ‘Ontologies for the internet of things’. Proc. ACM/IFIP/USENIX 12th Int. Middleware Conf., Lisboa, Portugal, 2011, pp. 16.
    35. 35)
      • 35. Roy, R., Kerr, C.I.V., Sackett, P.J., et al: ‘Design requirements management using an ontological framework’, CIRP Ann. Manuf. Technol., 2005, 54, (1), pp. 109112.
    36. 36)
      • 36. Chen, Y.J.: ‘Knowledge integration and sharing for collaborative molding product design and process development’, Comput. Ind., 2010, 61, (7), pp. 659675.
    37. 37)
      • 37. Lee, W.J., Ouyang, C.S., Lee, S.J.: ‘Constructing neuro-fuzzy systems with TSK fuzzy rules and hybrid SVD-based learning’. Proc. IEEE Int. Conf. Fuzzy Systems, Honolulu, HI, USA, 2002, pp. 11741179.
    38. 38)
      • 38. Daraei, A., Hamidi, H.: ‘A novel two-step feature selection based cost sensitive myocardial infarction prediction model’, Int. J. Comput. Intell. Syst., 2018, 11, (1), pp. 861872.
    39. 39)
      • 39. Yin, Y., Fan, Y., Xu, L.: ‘EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton’, IEEE Trans. Inf. Technol. Biomed., 2012, 16, (4), pp. 542549. doi: 10.1109/TITB.2011.2178034.
    40. 40)
      • 40. Daraei, A., Hamidi, H.: ‘An efficient predictive model for myocardial infarction using cost-sensitive J48 model’, Iran. J. Public Health, 2017, 46, (5), pp. 682692.
    41. 41)
      • 41. Kakar, A.S.: ‘A user-centric typology of information system requirements’, J. Organ. End User Comput., 2016, 28, (1), pp. 3255. doi:10.4018/JOEUC.2016010103.
    42. 42)
      • 42. Yin, Y., Zeng, Y., Chen, X., et al: ‘The internet of things in healthcare: an overview’, J. Ind. Inf. Integr., 2016, 1, pp. 313. doi: 10.1016/j.jii.2016.03.004.
    43. 43)
      • 43. Yang, P., Stankevicius, D., Marozas, V., et al: ‘Lifelogging data validation model for internet of things enabled healthcare system’, IEEE Trans. Syst. Man Cybern., Syst., 2016, 48, pp. 5064. doi: 10.1109/TSMC.2016.2586075.
    44. 44)
      • 44. Yan, H., Xu, L.D., Bi, Z., et al: ‘An emerging technology – wearable wireless sensor networks with applications in human health condition monitoring’, J. Manage. Analyt., 2015, 2, (2), pp. 121137. doi: 10.1080/23270012.2015.1029550.
    45. 45)
      • 45. Xu, B., Xu, K., Fu, L.L., et al: ‘Healthcare data analytics: using a metadata annotation approach for integrating electronic hospital records’, J. Manage. Analyt., 2016, 3, (2), pp. 136151. doi: 10.1080/23270012.2016.1141331.
    46. 46)
      • 46. Kamankesh, A., Hamidi, H.: ‘An approach to intelligent traffic management system using a multi-agent system’, Int. J. Intell. Transp. Syst. Res., 2017, 16, pp. 113. doi: 10.1007/s13177-017-0142-6.
    47. 47)
      • 47. Hamidi, H.: ‘Combined fuzzy method for evaluating criteria in enterprise resource planning implementation’, Int. J. Intell. Inf. Technol., 2016, 12, (2), pp. 2552. doi:10.4018/IJIIT.2016040103.
    48. 48)
      • 48. Panetto, H., Cecil, J.: ‘Editorial information systems for enterprise integration, interoperability and networking: theory and applications’, Enterp. Inf. Syst., 2013, 7, (1), pp. 16.
    49. 49)
      • 49. Tan, W., Xu, W., Yang, F., et al: ‘A framework for service enterprise workflow simulation with multi-agents cooperation’, Enterp. Inf. Syst., 2013, 7, (4), pp. 523542.
    50. 50)
      • 50. Li, L., Liu, J.: ‘An efficient and flexible web services-based multidisciplinary design optimization framework for complex engineering systems’, Enterp. Inf. Syst., 2012, 6, (3), pp. 345371.
    51. 51)
      • 51. de Vries, M., Gerber, A., van der Merwe, A.: ‘A framework for the identification of reusable processes’, Enterp. Inf. Syst., 2013, 7, (4), pp. 424469.
    52. 52)
      • 52. Tigli, O., Senveli, S.U.: ‘Biosensors in the small scale: methods and technology trends’, IET Nanobiotechnol., 2013, 7, (1), pp. 721.
    53. 53)
      • 53. Malhotra, B.D., Chaubey, A.: ‘Biosensors for clinical diagnostics industry’, Sens. Actuators B, Chem., 2003, 91, (1–3), pp. 117127.
    54. 54)
      • 54. So, C.F., Choi, K.S., Wong, T.K.S., et al: ‘Recent advances in noninvasive glucose monitoring’, Med. Devices Evid. Res., 2012, 5, (1), pp. 4552.
    55. 55)
      • 55. Fisher, J.C., Pry, R.H.: ‘A simple substitution model of technological change’, Technol. Forecast. Soc. Change, 1971, 3, pp. 7588.
    56. 56)
      • 56. Palmer, P.J., Williams, D.J., Hughes, C.: ‘Observations and models of technology trends within the electronics industry’, Eng. Sci. Educ. J., 1999, 8, pp. 233240.
    57. 57)
      • 57. Cho, Y., Daim, T.U., Sklar, P.: ‘Forecasting OLED TV technology using bibliometrics and fisher-pry diffusion model’. PICMET ‘15 Management of the Technology Age, Portland, 2015, pp. 21672176.
    58. 58)
      • 58. Trappey, C.V., Wu, H.Y., Taghaboni-Dutta, F., et al: ‘Using patent data for technology forecasting: China RFID patent analysis’, Adv. Eng. Inform., 2011, 25, (1), pp. 5364.
    59. 59)
      • 59. Lee, P.-C., Su, H.-N.: ‘How to analyze technology life cycle from the perspective of patent characteristics?’, 2015 Portland International Conference on Management of Engineering and Technology (PICMET), August 2015, pp. 20792083.
    60. 60)
      • 60. Naghsh Nilchi, A.R., Vafaei, A.: ‘Evaluation of security and fault-tolerance in mobile agents’. The 5th IEEE Conf. Wireless and Optical Communications Networks, Surabaya, East Java Indonesia, 5–7 May 2008.
    61. 61)
      • 61. Shadloo, B., Motevalian, A., Rahimi-movaghar, V., et al: ‘Psychiatric disorders are associated with an increased risk of injuries: data from the Iranian mental health survey’, Iran. J. Public Health, 2016, 45, (5), pp. 623635.
    62. 62)
      • 62. Vafaei, A., Hamidi, H.: ‘Evaluation of fault tolerant mobile agents in distributed systems’, Int. J. Intell. Inf. Technol., 2009, 5, (1), pp. 4360. doi:10.4018/jiit.2009010103.
    63. 63)
      • 63. Wu, J., Ding, F., Xu, M., et al: ‘Investigating the determinants of decision-making on adoption of public cloud computing in E-government’, J. Glob. Inf. Manage., 2016, 24, (3), pp. 7189.
    64. 64)
      • 64. Moradi, S.: ‘Analysis of consideration of security parameters by vendors on trust and customer satisfaction in E-commerce’, J. Glob. Inf. Manage., 2017, 25, (4), pp. 3245. doi:10.4018/JGIM.2017100103.
    65. 65)
      • 65. Hu, L., Zhu, Y., Chen, M., et al: ‘Development and validation of a disease severity scoring model for pediatric sepsis’, Iran. J. Public Health, 2016, 45, (7), pp. 875884.
    66. 66)
      • 66. Sood, A., James, G.M., Tellis, G.J., et al: ‘Predicting the path of technological innovation: SAW vs. Moore, Bass, Gompertz, and Kryder’, Mark. Sci., 2012, 31, (6), pp. 964979.
    67. 67)
      • 67. Vafaei, A., Monadjemi, S.A.: ‘Evaluation and check pointing of fault tolerant mobile agents execution in distributed systems’, J. Netw., 2010, 5, (7), pp. 800807. doi:10.4304/jnw.5.7.800-807.
    68. 68)
      • 68. Trappey, C.V., Wu, H.Y.: ‘An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles’, Adv. Eng. Inf., 2008, 22, (4), pp. 421430.
    69. 69)
      • 69. Wang, Y., Li, D.: ‘Virtual space co-creation: the perspective of user innovation’, J. Organ. End User Comput., 2016, 28, (2), pp. 92106. doi:10.4018/JOEUC.2016040106.
    70. 70)
      • 70. Parei, A.: ‘An approach to managing and organizing text documents using intelligent text analysis’, J. Inf. Process. Inf. Manage., 2017, 32, (4), pp. 11711202. Available at http://jipm.irandoc.ac.ir/article-1-3269-fa.html.
    71. 71)
      • 71. Gero, J.S.: ‘Design prototypes: a knowledge representation schema for design’, AI Mag., 1990, 11, (4), p. 26.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0129
Loading

Related content

content/journals/10.1049/iet-wss.2017.0129
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address