access icon free Lifetime maximisation of disjoint wireless sensor networks using multiobjective genetic algorithm

One of the lifetime maximisation methods for wireless sensor network (WSN) depends on organising the dense sensors into groups which can work in a cooperative sequential manner. Each group contains a subset of sensors that cover all the monitored area and is called a complete cover or simply a cover. Increasing the number of organised covers and maximising the covers lifetime enable longer network lifetime. Here, the authors investigate the WSN lifetime problem as a two-objective optimisation problem. The first objective is to find the maximum number of covers. The second objective considers the problem of wasted energy. Minimising the wasted energy in the critical sensors is achieved by defining a difference factor (DF). The DF is an indication of the difference between the critical sensor lifetime and the cover lifetime. This second objective is compared with other choices in the literature such as minimising the overlapping and minimising the variance. This optimisation problem is addressed using non-dominated sorting genetic algorithm-II (NSGA-II). Simulation results are conducted for the network lifetime when using one-objective and different two-objective optimisation problem. The choice of DF as the second objective is proved to overcome drawbacks of other second objectives choices.

Inspec keywords: energy measurement; wireless sensor networks; genetic algorithms; minimisation; telecommunication network reliability

Other keywords: wireless sensor network; nondominated sorting genetic algorithm-II; WSN lifetime problem; NSGA-II; difference factor; DF; two-objective optimisation problem; lifetime maximisation methods; multiobjective genetic algorithm

Subjects: Sensing devices and transducers; Wireless sensor networks; Power and energy measurement; Optimisation techniques; Mechanical variables measurement; Reliability

References

    1. 1)
      • 1. Contreras, W., Ziavras, S.: ‘Wireless sensor network-based pattern matching technique for the circumvention of environmental and stimuli-related variability in structural health monitoring’, IET Wirel. Sens. Syst., 2016, 6, (1), pp. 2633.
    2. 2)
      • 22. Bara'a, A.A., Khalil, E.A., Ozdemir, S., et al: ‘A multi-objective disjoint set covers for reliable lifetime maximization of wireless sensor networks’, Wirel. Pers. Commun., 2015, 81, (2), pp. 819838.
    3. 3)
      • 16. Rawat, P., Singh, K.D., Chaouchi, H., et al: ‘Wireless sensor networks: a survey on recent developments and potential synergies’, J. Supercomput., 2014, 68, (1), pp. 148.
    4. 4)
      • 6. Jin, R., Che, Z., Wang, Z., et al: ‘Battery optimal scheduling based on energy balance in wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (6), pp. 277282.
    5. 5)
      • 37. Sagar, A.K., Lobiyal, D.K.: ‘A multi-objective optimization approach for lifetime and coverage problem in wireless sensor network’, Intell. Comput. Netw. Inform., 2014, 243, pp. 343350.
    6. 6)
      • 18. Annie, U.R., Kasmir Raja, S.V., Antony, J., et al: ‘Energy-efficient predictive congestion control for wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (3), pp. 115123.
    7. 7)
      • 12. Panigrahi, B., De, S., Panda, B.S., et al: ‘Network lifetime maximising distributed forwarding strategies in ad hoc wireless sensor networks’, IET Commun., 2012, 6, (14), pp. 21382148.
    8. 8)
      • 32. Zhang, H., Hou, J.C.: ‘Maintaining sensing coverage and connectivity in large sensor networks’, Ad Hoc Sens. Wirel. Netw., 2005, 1, (1–2), pp. 89124.
    9. 9)
      • 33. Kim, H., Han, Y.H., Min, S.G.: ‘Maximum lifetime scheduling for target coverage in wireless sensor networks’. 6th Int. Wireless Communications and Mobile Computing Conf., France, June 2010, pp. 99103.
    10. 10)
      • 36. Diongue, D., Thiare, O.: ‘ALARM: an energy aware sleep scheduling algorithm for lifetime maximization in wireless sensor networks’. IEEE Symp. on Wireless Technology and Applications (ISWTA 2013), Malaysia, September 2013, pp. 7479.
    11. 11)
      • 39. Sengupta, S., Das, S., Nasir, M., et al: ‘Energy-efficient differentiated coverage of dynamic objects using an improved evolutionary multi-objective optimization algorithm with fuzzy-dominance’. 2012 IEEE Congress on Evolutionary Computation (CEC), Australia, June 2012, pp. 18.
    12. 12)
      • 17. Kosunalp, S., Chu, Y., Mitchell, P.D., et al: ‘Use of Q-learning approaches for practical medium access control in wireless sensor networks’, Eng. Appl. Artif. Intell., 2016, 55, pp. 146154.
    13. 13)
      • 2. Zonouz, E.A., Xing, L., Vokkarane, M.V., et al: ‘Hybrid wireless sensor networks: a reliability, cost and energy-aware approach’, IET Wirel. Sens. Syst., 2016, 6, (2), pp. 4248.
    14. 14)
      • 27. Cardei, M., Du, D.Z.: ‘Improving wireless sensor network lifetime through power aware organization’, Wirel. Netw., 2005, 11, (3), pp. 333340.
    15. 15)
      • 25. Cardei, M., Wu, J., Lu, M., et al: ‘Maximum network lifetime in wireless sensor networks with adjustable sensing ranges’. Proc. IEEE Intl. Conf. on Wireless and Mobile Computing Networking and Communications (WiMob'05), Canada, August 2005, vol. 3, pp. 438445.
    16. 16)
      • 9. Ashouri, M., Zali, Z., Mousavi, S.R., et al: ‘New optimal solution to disjoint set K-coverage for lifetime extension in wireless sensor networks’, IET Wirel. Sens. Syst., 2012, 2, (1), pp. 3139.
    17. 17)
      • 7. Slijepcevic, S., Potkonjak, M.: ‘Power efficient organization of wireless sensor networks’. Proc. IEEE Int. Conf. on Communications, Helsinki, Finland, 2001, pp. 472476.
    18. 18)
      • 30. Cardei, M., Thai, M.T., Li, Y., et al: ‘Energy-efficient target coverage in wireless sensor networks’. Proc. IEEE Infocom, Miami, FL, USA, 2005.
    19. 19)
      • 4. Mikhaylov, K., Tervonen, J., Heikkila, J., et al: ‘Wireless sensor networks in industrial environment: real-life evaluation results’. 2nd Baltic Congress on Future Internet Communications (BCFIC 2012), Vilniaus Gedimino Technikos Universitetas Vilnius, Lithuania, April 2012, pp. 17.
    20. 20)
      • 15. Huynh, T.T., Tran, T.N., Tran, C.H., et al: ‘Delay constraint energy-efficient routing based on Lagrange relaxation in wireless sensor networks’, IET Wirel. Sens. Syst., 2017, 7, (5), pp. 138145.
    21. 21)
      • 19. Sagar, A.K., Lobiyal, D.K.: ‘Coverage and lifetime maximization of wireless sensor network with multi-objective evolutionary algorithm’, Int. J. Sci. Eng. Res., 2014, 5, (6), pp. 11941203.
    22. 22)
      • 14. Li, J., AlRegib, G.: ‘Network lifetime maximization for estimation in multihop wireless sensor networks’, IEEE Trans. Signal Process., 2009, 57, (7), pp. 24562466.
    23. 23)
      • 20. Attea, B.A.A.: ‘Multi-objective set cover problem for reliable and efficient wireless sensors network’, Iraqi J. Sci., 2015, 56, (2A), pp. 11471160.
    24. 24)
      • 29. Liao, C., Ting, C.: ‘Extending wireless sensor network lifetime through order-based genetic algorithm’. IEEE Int. Conf. on Systems, Man and Cybernetics (SMC 2008), Singapore, 2008, pp. 14341439.
    25. 25)
      • 8. Cardei, I., Cardei, M.: ‘Energy-efficient connected-coverage in wireless sensor networks’, Int. J. Sensor Netw., 2008, 3, (3), pp. 201210.
    26. 26)
      • 24. Deif, D.S., Gadallah, Y.: ‘Classification of wireless sensor networks deployment techniques’, IEEE Commun. Surv. Tutor., 2014, 16, (2), pp. 834855.
    27. 27)
      • 26. Liao, C.C.: ‘Multiobjective evolutionary algorithm for lifetime extension and loading balancing of wireless sensor networks’. 3rd Int. Conf. on Innovations in Bio-Inspired Computing and Applications (IBICA 2012), Taiwan, September 2012, pp. 116121.
    28. 28)
      • 35. Sengupta, S., Das, S., Nasir, M., et al: ‘An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2012, 42, (6), pp. 10931102.
    29. 29)
      • 44. Fei, Z., Li, B., Yang, S., et al: ‘A survey of multi-objective optimization in wireless sensor networks: metrics, algorithms, and open problems’, IEEE Commun. Surv. Tutor., 2017, 19, (1), pp. 550586.
    30. 30)
      • 11. Razali, M.N., Salleh, S., Mohamadi, H.: ‘Solving priority-based target coverage problem in directional sensor networks with adjustable sensing ranges’, Wirel. Pers. Commun., 2017, 95, (2), pp. 847872.
    31. 31)
      • 28. Lai, C., Ting, C., Ko, R.: ‘An effective genetic algorithm to improve wireless sensor network lifetime for large-scale surveillance applications’. IEEE Congress on Evolutionary Computation (CEC 2007), Singapore, 2007, pp. 35313538.
    32. 32)
      • 31. Mir, A.K., Zubair, M., Qureshi, I.M.: ‘Lifetime maximization of wireless sensor networks using particle swarm optimization’, Turk. J. Electr. Eng. Comput. Sci., 2016, 24, pp. 160170.
    33. 33)
      • 42. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    34. 34)
      • 45. Zhan, Z.H., Zhang, J., Du, K.J., et al: ‘Extended binary particle swarm optimization approach for disjoint set covers problem in wireless sensor networks’. IEEE Conf. on Technologies and Applications of Artificial Intelligence (TAAI 2012), Taiwan, November 2012, pp. 327331.
    35. 35)
      • 5. Durisic, M.P., Tafa, Z., Dimic, G., et al: ‘A survey of military applications of wireless sensor networks’. 2012 Mediterranean Conf. on Embedded Computing (MECO 2012), Montenegro, June 2012, pp. 196199.
    36. 36)
      • 43. Coello, C.A.C.: ‘An updated survey of GA-based multiobjective optimization techniques’, ACM Comput. Surv., 2000, 32, (2), pp. 109143.
    37. 37)
      • 21. Li, J., Hou, X., Su, D., et al: ‘Fuzzy power-optimised clustering routing algorithm for wireless sensor networks’, IET Wirel. Sens. Syst., 2017, 7, (5), pp. 130137.
    38. 38)
      • 10. Njoya, A.N., Thron, C., Barry, J., et al: ‘Efficient scalable sensor node placement algorithm for fixed target coverage applications of wireless sensor networks’, IET Wirel. Sens. Syst., 2017, 7, (2), pp. 4454.
    39. 39)
      • 3. Yeh, L.-W., Wang, Y.-C., Tseng, Y.-C.: ‘Ipower: an energy conservation system for intelligent buildings by wireless sensor networks’, Int. J. Sensor Netw., 2009, 5, (1), pp. 110.
    40. 40)
      • 13. Cheng, C.T., Leung, H.: ‘A multi-objective optimization framework for cluster-based wireless sensor networks’. 2012 Int. Conf. on Cyber-Enabled Distributed Computing and Knowledge Discovery, Sanya (CyberC’ 2012), China, October 2012, pp. 341347.
    41. 41)
      • 41. Huang, C.F., Tseng, Y.C.: ‘The coverage problem in a wireless sensor network’, Mob. Netw. Appl., 2005, 10, (4), pp. 519528.
    42. 42)
      • 23. Wang, B.: ‘Coverage problems in sensor networks: survey’, ACM Comput. Surv., 2011, 43, (4), pp. 153.
    43. 43)
      • 34. Cao, Y., Huang, L., Xing, K., et al: ‘Local maximum lifetime algorithms for strong k-barrier coverage with coordinated sensors’. IEEE 3rd Int. Conf. on Communication Software and Networks (ICCSN 2011), China, May 2011, pp. 7176.
    44. 44)
      • 38. Hu, X.M., Zhang, J., Yu, Y., et al: ‘Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks’, IEEE Trans. Evol. Comput., 2010, 14, (5), pp. 766781.
    45. 45)
      • 40. Zhong, J.H., Zhang, J.: ‘Energy-efficient local wake-up scheduling in wireless sensor networks’. Proc. of IEEE Congress on Evolutionary Computation (CEC), USA, June 2011, pp. 22802282.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0069
Loading

Related content

content/journals/10.1049/iet-wss.2017.0069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading