Design and analysis of a novel wireless resistive analog passive sensor technique

Design and analysis of a novel wireless resistive analog passive sensor technique

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Unobtrusive monitoring of physiological signals in natural settings is important for precision diagnostics. Fully-passive wireless body-worn sensors are viable and promising for unobtrusive monitoring. In this study, the authors present a new class of fully-passive sensor, namely wireless resistive analog passive (WRAP) sensor. It uses resistive transducers at the sensors for converting physical stimulus to load modulation of carrier wireless signal at 13.56 MHz at low power (–20 to 0 dBm). The sensor is simply composed of a loop antenna, a tuning capacitor, and a resistive transducer suitable for the type of physiological signals to be measured. The authors report the characterisation of WRAP sensors for various resistive loads of 1.2 ω to 82 kω at various co-axial distances (5–40 mm) between the TX and RX antennas. They have prototyped and characterised multiple WRAP sensors with several practical measurements of physiological signals such as heart rate, temperature, and pulse oximetry. They also demonstrate bio-potential measurement (down to 400 μV pp ) using metal–oxide–semiconductor field-effect transistor as the transducer. These results show the feasibility of developing a new type of body-worn fully-passive WRAP sensors for unobtrusive physiological signal monitoring at real-life settings for precision diagnostics of many disorders and tracking person-centric therapy efficacy.


    1. 1)
      • 1. Zonouz, A.E., Xing, L., Vokkarane, V.M., et al: ‘Hybrid wireless sensor networks: a reliability, cost and energy-aware approach’, IET Wirel. Sensor Syst., 2016, 6, (2), pp. 4248.
    2. 2)
      • 2. Mathur, P., Nielsen, R.H., Prasad, N.R., et al: ‘Data collection using miniature aerial vehicles in wireless sensor networks’, IET Wirel. Sensor Syst., 2016, 6, (1), pp. 1725.
    3. 3)
      • 3. Islam, S.K., Fathy, A., Wang, Y., et al: ‘IEEE microwave magazine’, 2014, 15, (7), pp. S25S33.
    4. 4)
      • 4. Zhang, C., Kuhn, M.J., Merkl, B.C., et al: ‘Real-time noncoherent UWB positioning radar with millimeter range accuracy: theory and experiment’, IEEE Trans Microw. Theory Tech., 2010, 58, (1), pp. 920.
    5. 5)
      • 5. Yang, D., Fathy, A.E., Li, H., et al: ‘Millimeter accuracy UWB positioning system using sequential sub-sampler and time difference estimation algorithm’. Proc. IEEE conf on Radio and Wireless Symp., 2010, pp. 539542.
    6. 6)
      • 6. Wang, Y., Liu, Q., Fathy, A.E.: ‘CW and PulseDoppler radar processing based on FPGA for human sensing applications’, IEEE Trans Geosci. Remote Sens., 2013, 51, (5), pp. 30973107.
    7. 7)
      • 7. Kozma, R., Tanigawaa, T.: ‘Orges furxhi and sergi consul-pacareu: ‘automatic decision support in heterogeneous sensor networks’. Proc. SPIE 8408, Cyber Sensing, 2012, 84080M.
    8. 8)
      • 8. Chi, Y.M., Jung, T., Cauwenberghs, G.: ‘Dry-contact and noncontact biopotential electrodes: methodological review’, IEEE Rev. Biomed. Eng., 2010, 3, pp. 106119.
    9. 9)
      • 9. Sabban, A.: ‘Comprehensive study of printed antennas on human body for medical applications’, Intl. J. Adv. Med. Sci., 2013, 1, (1), pp. 110.
    10. 10)
      • 10. Sawan, M., Hu, Y., Coulombe, J.: ‘Wireless smart implants dedicated to multichannel monitoring and microstimulation’, IEEE Circuits Syst. Mag., 2005, 5, (1), pp. 2139.
    11. 11)
      • 11. Bashirullah, R.: ‘Wireless implants’, IEEE Microw. Mag., 2010, 11, (7), pp. S14S23.
    12. 12)
      • 12. Popovic, Z., Falkenstein, E.A., Costinett, D., et al: ‘Low-power far-field wireless powering for wireless sensors’, Proc. IEEE, 2013, 101, (6), pp. 13971409.
    13. 13)
      • 13. Luo, W., Fu, Q., Deng, J., et al: ‘An integrated passive impedance-loaded SAW sensor’, Sens. Actuators B, Chem., 2013, 187, pp. 215220.
    14. 14)
      • 14. Schwerdt, H.N., Xu, W., Shekhar, S., et al: ‘A fully-pasive wireless microsystem for recording of neuropotentials using RF backscattering methods’, J. Microelectromech. Syst., 2011, 20, (5), pp. 11191130.
    15. 15)
      • 15. Riistama, J., Aittokallio, E., Verho, J., et al: ‘Totally passive wireless biopotential measurement sensor by utilizing inductively coupled resonance circuits’, Sens. Actuators A, 2010, 157, pp. 313321.
    16. 16)
      • 16. Consul-Pacareu, S., Arellano, D., Morshed, B.I.: ‘Body-worn fully-passive wireless analog sensors for physiological signal capture through load modulation using resistive transducers’. IEEE Healthcare Innovations and Point-of-Care Technologies Conf., Seattle, WA, October 2014, pp. 6770.
    17. 17)
      • 17. Consul-Pacareu, S., Arellano, D., Morshed, B.I.: ‘Body-worn fully-passive wireless analog sensors for biopotential measurement through load modulation’. IEEE Biowireless Conf, 2015, pp. 13.
    18. 18)
      • 18. Noroozi, B., Morshed, B.I.: ‘PSC optimization of 13.56-MHz resistive wireless analog passive sensors’, IEEE Trans. Microw. Theory Techn., 2017, 65, (9), pp. 35483555.
    19. 19)
      • 19. Noroozi, B., Morshed, B.I.: ‘Simulation of coil separation and angle effects on the mutual inductance for 13.56 MHz WRAP sensors’. National Radio Science Meeting, Boulder, CO, January 4–6 2017.
    20. 20)
      • 20. Noroozi, B., Morshed, B.I.: ‘Coil distance and angle misalignment effects on the mutual inductance for 13.56 MHz WRAP sensors’. National Radio Science Meeting, Boulder, CO, (accepted), January 4–6 2018.
    21. 21)
      • 21. Morshed, B.I.: ‘Dual coil for remote probing of signals using resistive wireless analog passive sensors (rWAPS)’. National Radio Science Meeting, Commission B, Boulder, CO, January 6–9 2016.
    22. 22)
      • 22. Morshed, B.I., Harmon, B., Zaman, M.S., et al: ‘Inkjet printed fully-passive body-worn wireless sensors for smart and connected community (SCC)’, J. Low Power Electron. Appl., 2017, 7, (4), pp. 121, article 26.
    23. 23)
      • 23. Goulbourne, J.A.: ‘HF antenna cookbook’, Texas Instruments, Lit. Number 11-08-26-001, Ed. 1, 2001, pp. 114.
    24. 24)
      • 24. Code of Federal Regulations, Title 47, Part 15 (47 CFR 15).
    25. 25)
      • 25. Sanders, F.H.: ‘Derivations of relationsships Among field strength, power in transmitter-receiver circuits and radiation hazard limits’, NTIA Technical Memo T-10-469, U.S. Dept. of Commerce, June 2010.
    26. 26)
      • 26. McCraty, R., Atkinson, M., Tiller, W., et al: ‘The effects of emotions on short-term power spectrum analysis of heart rate variabitlity’, American J. Cardiol., 1995, 76, (14), pp. 10891093.
    27. 27)
      • 27. Vrijkotte, T.G.M., van Doornen, L.J.P., de Geus, E.J.C.: ‘Effects of work stress on ambulatory blood pressure heart rate, and heart rate variability, hypertension’, Hypertension, 2000, 35, pp. 880886.
    28. 28)
      • 28. Pincus, S.M., Viscarello, R.R.: ‘Approximate entropy: A regularity measure for fetal heart rate analysis’, Obstetrics & Gynecology, 1992, 79, pp. 249255.
    29. 29)
      • 29. Ahmad, S., Tejuja, A., Newman, K.D., et al: ‘Clinical review: A review and analysis of heart rate variability and the diagnosis and prognosis of infection’, Critical Care, 2009, 13, (6), p. 232.
    30. 30)
      • 30. Pamela Griffin, M., Lake, D.E., Bissonette, E.A., et al: ‘Heart rate characteristics: novel physiomarkers to predict neonatal infection and death’, J. Am. Acad. Pediatrics, 2005, 116, (5), pp. 10701074.
    31. 31)
      • 31. Longo, D.L., Fauci, A.S., Kasper, D.L., et al: ‘Harrison's principles of internal medicine’ (McGraw-Hill, New York, NY, 2011, 18th edn.).
    32. 32)
      • 32. Sund-Levander, M., Forsberg, C., Wahren, L.K.: ‘Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review’, Scand. J. Caring Sci., 2002, 16, (2), pp. 122128.
    33. 33)
      • 33. Lopez, S.: ‘Pulse oximeter fundamentals and design’. AN4327, Freescale Semiconductor.
    34. 34)
      • 34. Ferrari, M., Muthalib, M., Quaresima, V.: ‘The use of NIR spectroscopy in understanding skeletal muscle physiology: recent developments’, Philos. Trans. A Math. Phys. Eng. Sci., 2011, 369, pp. 45774590.
    35. 35)
      • 35. Hai, N.T., Cuong, N.Q., Khoa, T.Q.D., et al: ‘Temporal hemodynamic classification of two hands tapping using functional near-infrared spectroscopy’, Front. Hum. Neurosci., 2013, 7, pp. 516.
    36. 36)
      • 36. Izzetoglu, K., et al: ‘The evolution of field deployable fNIR spectroscopy from bench to clinical settings’, J. Innov. Opt. Sci., 2011, 4, (3), pp. 239250.
    37. 37)
      • 37. Khatun, S., Mahajan, R., Morshed, B.I.: ‘Comparative study of wavelet based unsupervised ocular artifact removal techniques for single channel EEG data’, J. Translational Eng. Health Med., 2016, 4, (1), pp. 18.

Related content

This is a required field
Please enter a valid email address