access icon free µKMS: micro key management system for WSNs

Key management is the basic building block of all the security protocols and is one of the most challenging issues in wireless sensor networks (WSNs). Centralising a trusted key management server is not an appropriate solution in such fully distributed networks. On the other hand, designing a distributed key management system is a challenging task, due to the constrained characteristics of sensor nodes, which are limited in storage, computation, communication, and energy. In the literature, there is a hot research effort on key management purpose for WSNs. The greatest part of the existing solutions focuses mainly on the optimisation of the key number, rekeying frequency and process or the encryption system of the distributed keys. Unfortunately, these systems are implemented as an additional and independent service, involving a considerable overhead. In this study, the authors propose µKMS (micro key management system) for WSNs. µKMS implements a dissimulation scheme, embedding the rekeying process messages on the unexploited coding space of the exchanged ZigBee packets. They have developed simulations, where the obtained results show the relevance of µKMS in terms of communication overhead, storage overhead, and energy consumption.

Inspec keywords: cryptographic protocols; wireless sensor networks

Other keywords: trusted key management server; μKMS; ZigBee packets; security protocols; micro key management system; wireless sensor networks; WSN

Subjects: Protocols; Wireless sensor networks; Cryptography

References

    1. 1)
      • 9. Shamir, A.: ‘How to share a secret’, ACM Commun., 1979, 22, pp. 612613.
    2. 2)
      • 16. Pietro, R-D., Guarino, S., Verde, N-V., et al: ‘Security in wireless ad-hoc networks: a survey’, Comput. Commun., 2014, 51, pp. 120.
    3. 3)
      • 20. Heizelman, W., Chandrakasan, A., Balakrishnan, H.: ‘Energy-efficient communication protocol for wireless sensor networks’. Proc. of the Hawaii Int. Conf. Systems, 2000.
    4. 4)
      • 2. Kamila, N.-K.: ‘Handbook of research on wireless sensor network trends, technologies, and applications’ (IGI-Global, Book, Hershey, Pennsylvania, USA, 2016), DOI: 10.4018/978-1-5225-0501-3.
    5. 5)
      • 21. Certicom Corporation: ‘SEC 1: elliptic curve cryptography’. Standards for Efficient Cryptography, 2000.
    6. 6)
      • 1. Fahmy, H.-M.-A.: ‘Wireless sensor networks: concepts, applications, experimentation and analysis’ (Springer, Book, Signals and Communication Technology, New York City, USA, 2016).
    7. 7)
      • 17. Cho, H.-H., Chen, C.-H., Shih, T.-K., et al: ‘Survey on underwater delay/disruption tolerant wireless sensor network routing’, IET Wirel. Sensor Syst., 2014, 4, (3), pp. 112121.
    8. 8)
      • 10. Chan, H., Perrig, A., Song, D.: ‘Random key pre-distribution schemes for sensor networks’. Proc. 2003 IEEE Symp. Security and Privacy, 2003, pp. 197213.
    9. 9)
      • 7. Ruj, S., Nayak, A., Stojmenovic, I.: ‘Pairwise and triple key distribution in wireless sensor networks with applications’, IEEE Trans. Comput., 2013, 62, (11), pp. 22242237.
    10. 10)
      • 18. Jokhio, S.-H., Jokhio, I.-A., Kemp, A.-H.: ‘Node capture attack detection and defense in wireless sensor networks’, IET Wirel. Sensor Syst., 2012, 2, (3), pp. 161169.
    11. 11)
      • 22. Meulenaer, G., Gosset, F., Standaert, F.-X., et al: ‘The energy cost of communication and cryptography in wireless sensor networks’. Proc. of the IEEE Int. Conf. Wireless and Mobile Computing, Networking and Communication, 2004, pp. 580585.
    12. 12)
      • 6. He, X., Niedermeier, M., de-Meer, H.: ‘Dynamic key management in wireless sensor networks: a survey’, J. Netw. Comput. Appl., 2013, 36, (2), pp. 611622.
    13. 13)
      • 13. Du, D., Xiong, H., Wang, H.: ‘An efficient key management scheme for wireless sensor networks’, Int. J. Distrib. Sensor Netw., 2012, 8, (1), pp. 114.
    14. 14)
      • 8. Zhang, W., Shen, Y., Lee, S.: ‘A cluster-based group key management scheme for wireless sensor networks’. Proc. 12th Asia-Pacific Web Conf., 2010.
    15. 15)
      • 3. Challal, Y., Ouadjaout, A., Lasla, N., et al: ‘Secure and efficient disjoint multipath construction for fault tolerant routing in wireless sensor networks’, J. Netw. Comput. Appl., 2011, 34, pp. 13801397.
    16. 16)
      • 5. Nisha, D.M.: ‘Storage as a parameter for classifying dynamic key management schemes proposed for WSNs’. Proc. of the IEEE Int. Conf. Computational Techniques in Information and Communication Technologies (ICCTICT), India, 2016, pp. 5156.
    17. 17)
      • 19. Burrows, M., Abadi, M., Needham, R.: ‘A logic of authentication’, ACM Trans. Comput. Syst., 1990, 8, (1), pp. 1836.
    18. 18)
      • 14. IEEE: ‘IEEE standard 802.15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks’. Low-Rate Wireless Personal Area Networks (LR-WPANs), 2006, Available at URL: http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf.
    19. 19)
      • 4. Simplicio, M-A., Barreto, P-S-L-M., Margi, C-B., et al: ‘A survey on key management mechanisms for distributed wireless sensor networks’, Comput. Netw., 2010, 54, (15), pp. 25912612.
    20. 20)
      • 15. ZigBee Alliance: ‘Standards: ZigBee specification’. ZigBee Standards Organization, Document ID 053474r20, 2012, Available at URL: http://www.zigbee.org/download/standards-zigbee-specification/.
    21. 21)
      • 12. Suganthi, N., Vembu, S.: ‘Energy efficient key management scheme for wireless sensor networks’, Int. J. Comput. Commun. Control, 2014, 9, (1), pp. 7178.
    22. 22)
      • 11. Seo, S.-H., Won, J., Sultana, S., et al: ‘Effective key management in dynamic wireless sensor networks’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (2), pp. 371383.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2017.0048
Loading

Related content

content/journals/10.1049/iet-wss.2017.0048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading