Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Evolving attackers against wireless sensor networks using genetic programming

Recent hardware developments have made it possible for the Internet of Things (IoT) to be built. A wide variety of industry sectors, including manufacturing, utilities, agriculture, transportation, and healthcare are actively seeking to incorporate IoT technologies in their operations. The increased connectivity and data sharing that give IoT systems their advantages also increase their vulnerability to attack. In this study, the authors explore the automated generation of attacks using genetic programming (GP), so that defences can be tested objectively in advance of deployment. In the authors’ system, the GP-generated attackers targeted publish–subscribe communications within a wireless sensor networks that was protected by an artificial immune intrusion detection system (IDS) taken from the literature. The GP attackers successfully suppressed more legitimate messages than the hand-coded attack used originally to test the IDS, whilst reducing the likelihood of detection. Based on the results, it was possible to reconfigure the IDS to improve its performance. Whilst the experiments were focussed on establishing a proof-of-principle rather than a turnkey solution, they indicate that GP-generated attackers have the potential to improve the protection of systems with large attack surfaces, in a way that is complementary to traditional testing and certification.

References

    1. 1)
      • 32. Druschel, P., Kaashoek, M.F., Rowstron, A.I.T.: IPTPS ‘01: Revised Papers from the First Int. Workshop on Peer-to-Peer Syst., 2002.
    2. 2)
      • 19. Colbaugh, R., Glass, K.: ‘Predictability-oriented defense against adaptive adversaries’. IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), 2012, pp. 27212727.
    3. 3)
      • 8. BSI: ‘Die Lage der IT-Sicherheit in Deutschland 2014’, Bundesamt fur Sicherheit in der Informationstechnik, 2014.
    4. 4)
      • 31. Wales, D.J., Doye, J.P.K.: ‘Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 Atoms’, J. Phys. Chem. A, 1997, 101, (28), pp. 51115116.
    5. 5)
      • 33. Newsome, J., Shi, E., Song, D., et al: ‘The Sybil attack in sensor networks: analysis and defenses’. Proc. of IEEE Conf. on Information Processing in Sensor Networks (IPSN), 2004.
    6. 6)
      • 9. ICS-CERT: ‘Alert (ICS-ALERT-14-281-01D): ongoing sophisticated malware campaign compromising ICS (update D)’, Industrial Control Systems Cyber Emergency Response Team, 2016.
    7. 7)
      • 17. Tarvis, S., Tauritz, D.: ‘Increasing infrastructure resilient through competitive’, New Math. Nat. Comput., 2009, 05, pp. 441457.
    8. 8)
      • 25. Greensmith, J., Aickelin, U., Cayzer, S.: ‘Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection’. Artificial Immune Systems, 2005 (LNCS, 3627), pp. 153167.
    9. 9)
      • 16. Service, T., Tauritz, D., Siever, W.: ‘Infrastructure hardening: a competitive coevolutionary methodology inspired by neo-darwinian arms races’. Computer Software and Applications Conf., 2007, vol. 4, pp. 101104.
    10. 10)
      • 6. MacDougall, W.: ‘Industrie 4.0 Smart manufacturing for the future’, Germany Trade and Invest, 2014.
    11. 11)
      • 11. Kayacik, G.K., Zincir-Heywood, N.A., Heywood, M.I.: ‘Can a good offense be a good defense? Vulnerability testing of anomaly detectors through an artificial arms race’, Appl. Soft Comput., 2011, 11, (7), pp. 43664383.
    12. 12)
      • 10. Wallenta, C., Kim, J., Bentley, P.J., et al: ‘Detecting interest cache poisoning in sensor networks using an artificial immune algorithm’, Appl. Intell., 2010, 32, (1), pp. 126.
    13. 13)
      • 24. Intanagonwiwat, C., Govindan, R., Estrin, D., et al: ‘Directed diffusion for wireless sensor networking’, IEEE/ACM Trans. Netw., 2002, 11, (1), pp. 216.
    14. 14)
      • 4. Roman, R., Zhou, J., Lopez, J.: ‘On the features and challenges of security and privacy in distributed internet of things’, Comput. Netw., 2013, 57, (10), pp. 22662279.
    15. 15)
      • 23. Panigrahi, N., Mohan, P.K.: ‘Optimal topological balancing strategy for performance optimisation of consensus-based clock synchronisation protocols in wireless sensor networks: a genetic algorithm-based approach’, IET Wirel. Sens. Syst., 2014, 4, (4), pp. 213222.
    16. 16)
      • 7. Falliere, N., Murchu, O.L., Chien, E.: ‘W32.Stuxnet Dossier (version 1.4)’, Symantec Security Response, 2011.
    17. 17)
      • 28. Steinman, R.M.: ‘The dendritic cell system and its role in immunogenicity’. Annu. Rev. Immunol., 1991.
    18. 18)
      • 21. Wu, Y., Liu, W.: ‘Routing protocol based on genetic algorithm for energy harvesting-wireless sensor networks’, IET Wirel. Sens. Syst., 2013, 3, (2), pp. 112118.
    19. 19)
      • 5. Slay, J., Miller, M.: ‘Lessons learned from the Maroochy Water Breach’. Proc. of the Critical Infrastructure Protection, 2007, pp. 7382.
    20. 20)
      • 26. Greensmith, J., Aickelin, U., Twycross, J.: ‘Articulation and clarification of the dendritic cell algorithm’. 5th Int. Conf. on Artificial Immune Systems (ICARIS), 2006, pp. 404417.
    21. 21)
      • 22. Bhondekar, A.P., Renu, V., Singla, M., et al: ‘Genetic algorithm based node placement methodology for wireless sensor networks’. Int. Multi Conf. of Engineers and Computer Scientists, 2009, pp. 106112.
    22. 22)
      • 18. Decraene, J., Chandramohan, M., Low, M.Y.H., et al: ‘Evolvable simulations applied to automated red teaming: a preliminary study’. Simulation Conf. (WSC), Proc. of the 2010 Winter, 2010, pp. 14441455.
    23. 23)
      • 30. Albert, R., Jeong, H., Barabasi, A.-L.: ‘Error and attack tolerance of complex networks’, Nature, 2000, 406, pp. 378382.
    24. 24)
      • 20. Bouffard, G., Thampi, B.N., Lanet, J.-L.: ‘Detecting laser fault injection for smart cards using security automata’. Proc. Security in Computing and Communications: Int. Symp., SSCC 2013, 2013, pp. 1829.
    25. 25)
      • 1. Xu, L.D., He, Wa., Li, S.: ‘Internet of things in industries: a survey’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 22332243.
    26. 26)
      • 2. Cisco: ‘The Internet of Things: how the next evolution of the internet is changing everything’ (CISCO Internet Business Solutions Group (IBSG), 2011).
    27. 27)
      • 29. Ebert, J.P., Willig, A.: ‘A Gilbert–Elliot bit error model and the efficient use in packet level simulation’. Technical Report TKN-99-002, Telecommunication Networks Group, Technical University Berlin, 1999.
    28. 28)
      • 12. Kayacik, G.K., Zincir-Heywood, N.A., Heywood, M.I.: ‘Evolutionary computation as an artificial attacker: generating evasion attacks for detector vulnerability testing’, Evol. Intell., 2011, 4, (4), pp. 243266.
    29. 29)
      • 3. Atzori, T., Iera, A., Morabito, G.: ‘The internet of things: a survey’, Comput. Netw., 2010, 54, (15), pp. 27872805.
    30. 30)
      • 34. Lopez, J., Roman, R., Agudo, I., et al: ‘Trust management systems for wireless sensor networks: best practices’, Comput. Commun., 2010, 33, (9), pp. 10861093.
    31. 31)
      • 15. Arnold, H., Masad, D., Pagani, G.A., et al: ‘NetAttack: co-evolution of network and attacker’. Proc. of the Santa FeInstitute Complex Systems Summer School, 2013.
    32. 32)
      • 27. Aickelin, U., Bentley, P., Cayzer, S., et al: ‘Danger theory: the link between AIS and IDS?’. Proc. of the Second Int. Conf. on Artificial Immune Systems, 2003 (LNCS, 2787), pp. 147155.
    33. 33)
      • 14. John, D.J., Smith, R.W., Turkett, W.H., et al: ‘Evolutionary based moving target cyber defense’. Proc. of the Companion Publication of the 2014 Annual Conf. on Genetic and Evolutionary Computation (GECCO'14), 2011, pp. 12611268.
    34. 34)
      • 13. Rush, G., Tauritz, D.R., Kent, D.A.: ‘Coevolutionary agent-based network defense lightweight event system (CANDLES)’. Proc. of the 17th Annual Conf. Companion on Genetic and Evolutionary Computation (GECCO'15), 2015, pp. 859866.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2016.0090
Loading

Related content

content/journals/10.1049/iet-wss.2016.0090
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address