http://iet.metastore.ingenta.com
1887

RSS-based indoor localisation using MDCF

RSS-based indoor localisation using MDCF

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As a low-cost distance measurement method, received signal strength (RSS) is often used for indoor wireless sensor localisation. However, RSS values can be easily influenced by multi-path fading, noise and other environmental parameters. This decreases the accuracy and stability of estimated distance. To improve localisation accuracy, this study proposes a multiplicative distance-correction factor (MDCF) to counteract the inaccuracy of estimated distance. In the same indoor environment, the product of this CF and estimated distance is regarded as a good approximation of real distance between unknown node and an anchor node. Then, two location estimated methods based on MDCF (MDCF-grid and MDCF-particle swarm optimisation) are proposed. The experimental results confirm that the proposed location estimation methods can significantly improve localisation accuracy without extra hardware in practical indoor scenarios.

References

    1. 1)
      • 1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., et al: ‘Wireless sensor networks: a survey’, Comput. Netw., 2002, 38, (4), pp. 393422.
    2. 2)
      • 2. Liu, Y., Zheng, Y.: ‘Location, localization, and localizability: location-awareness technology for wireless networks’ (Springer Science & Business Media, 2010).
    3. 3)
      • 3. Correa, A., Barcelo Llado, M., Morell, A., et al: ‘Indoor pedestrian tracking by on-body multiple receivers’, IEEE Sens. J., 2016, 16, (8), pp. 25452553.
    4. 4)
      • 4. Chen, Z., Zhu, Q., Soh, Y.C.: ‘Smartphone inertial sensor-based indoor localization and tracking with iBeacon corrections’, IEEE Trans. Ind. Inf., 2016, 12, (4), pp. 15401549.
    5. 5)
      • 5. Ma, X.H., Bing, Z.G., Tang, Y.Q.: ‘Research on localization technology in wireless sensor networks’, in Lin, S., Huang, X. (Eds.): ‘Advanced research on computer education, simulation and modeling’ (Springer, Berlin Heidelberg, 2011), pp. 392398.
    6. 6)
      • 6. Mitilineos, S.A., Kyriazanos, D.M., Segou, O.E., et al: ‘Indoor localisation with wireless sensor networks’, Prog. Electromagn. Res., 2010, 109, pp. 441474.
    7. 7)
      • 7. Fang, X., Yan, W., Zhang, F., et al: ‘Optimal sensor placement for range-based dynamic random localization’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (12), pp. 15.
    8. 8)
      • 8. Oguz-Ekim, P., Gomes, J.P., Xavier, J., et al: ‘An angular approach for range-based approximate maximum likelihood source localization through convex relaxation’, IEEE Trans. Wirel. Commun., 2014, 13, (7), pp. 39513964.
    9. 9)
      • 9. Thomas, F., Ros, L.: ‘Revisiting trilateration for robot localization’, IEEE Trans. Robot., 2005, 21, (1), pp. 93101.
    10. 10)
      • 10. Liu, H., Darabi, H., Banerjee, P., et al: ‘Survey of wireless indoor positioning techniques and systems’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2007, 37, (6), pp. 10671080.
    11. 11)
      • 11. Mistry, H.P., Nital, N.H.: ‘RSSI based localization scheme in wireless sensor networks: a survey’. IEEE 2015 Fifth Int. Conf. on Advanced Computing & Communication Technologies, 2015.
    12. 12)
      • 12. Alavi, B., Kaveh, P.: ‘Modeling of the TOA-based distance measurement error using UWB indoor radio measurements’, IEEE Commun. Lett., 2006, 10, (4), pp. 275277.
    13. 13)
      • 13. Zhang, X., Tadrous, J., Everett, E., et al: ‘Angle-of-arrival based beamforming for FDD massive MIMO’. IEEE 2015 49th Asilomar Conf. on Signals, Systems and Computers, 2015.
    14. 14)
      • 14. Jin, R., Xu, H., Che, Z., et al: ‘Experimental evaluation of reducing ranging-error based on receive signal strength indication in wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 228234.
    15. 15)
      • 15. Paul, A.S., Wan, E.A.: ‘RSSI-based indoor localization and tracking using sigma-point Kalman smoothers’, IEEE J. Sel. Top. Signal Process., 2009, 3, (5), pp. 860873.
    16. 16)
      • 16. Rappaport, T.S.: ‘Wireless communications: principles and practice’ (Prentice-Hall PTR, NJ, 1996).
    17. 17)
      • 17. Cheng, L., Wu, C., Zhang, Y.: ‘Indoor robot localization based on wireless sensor networks’, IEEE Trans. Consum. Electron., 2011, 57, (3), pp. 10991104.
    18. 18)
      • 18. Sahu, P.K., Wu, E.H., Sahoo, J.: ‘DuRT: dual RSSI trend based localization for wireless sensor networks’, IEEE Sens. J., 2013, 13, (8), pp. 31153123.
    19. 19)
      • 19. Yun, S., Lee, J., Chung, W., et al: ‘A soft computing approach to localization in wireless sensor networks’, Expert Syst. Appl., 2009, 36, (4), pp. 75527561.
    20. 20)
      • 20. Koyuncu, H., Yang, S.: ‘Improved adaptive localisation approach for indoor positioning by using environmental thresholds with wireless sensor nodes’, IET Wirel. Sens. Syst., 2014, 5, (3), pp. 157165.
    21. 21)
      • 21. Pagano, S., Peirani, S., Valle, M.: ‘Indoor ranging and localisation algorithm based on received signal strength indicator using statistic parameters for wireless sensor networks’, IET Wirel. Sens. Syst., 2015, 5, (5), pp. 243249.
    22. 22)
      • 22. Cho, S.Y.: ‘Measurement error observer-based IMM filtering for mobile node localization using WLAN RSSI measurement’, IEEE Sens. J., 2016, 16, (8), pp. 24892499.
    23. 23)
      • 23. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’, 1995, pp. 19421948.
    24. 24)
      • 24. Eberhart, R., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Int. Symp. on MICRO Machine and Human Science, 1995, pp. 3943.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2016.0085
Loading

Related content

content/journals/10.1049/iet-wss.2016.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address