Outlier detection for wireless sensor networks using density-based clustering approach

Outlier detection for wireless sensor networks using density-based clustering approach

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Outlier detection (OD) constitutes an important issue for many research areas namely data mining, medicines, and sensor networks. It is helpful mainly in identifying intrusion, fraud, errors, defects, noise and so on. In fact, outlier measurements are essential improvements to quality of information, as they are not conforming to expected normal behaviour. Due to the importance of sensed measurements is collected via wireless sensor networks, a novel OD process dubbed density-based spatial clustering of applications with noise (DBSCAN)-OD has been developed based on the algorithm DBSCAN, as a background for OD. With respect to the classic DBSCAN approach, two processes have been jointly combined, the first of computing parameters, while the second concerns class identification in spatial temporal databases. Through both of these modules, one is able to consider real-time application cases as centralised in the base station for the purpose of separating outliers from normal sensors. For the sake of evaluating the authors proposed solution, a diversity of synthetic databases has been applied as generated from real measurements of Intel Berkeley lab. The reached simulation findings indicate well that their devised method can prove to help effectively in detecting outliers with an accuracy rate of 99%.


    1. 1)
      • 1. Qiu, Y., Cheng, X., Hou, W., et al: ‘On classification of biological data using outlier detection’. 12th Int. Symp. on Operations Research and its Applications in Engineering, Technology and Management (ISORA 2015), 2015, pp. 17.
    2. 2)
      • 2. Zhang, Y.-Y., Chao, H.-C., Chen, M., et al: ‘Outlier detection and countermeasure for hierarchical wireless sensor networks’, IET Inf. Sec., 2010, 4, (4), pp. 361373.
    3. 3)
      • 3. Aggarwal, C.C.: ‘Outlier analysis’, in ‘Data mining’ (Springer International Publishing, 2015), pp. 237263.
    4. 4)
      • 4. Khosravi, A., Kavian, Y.: ‘Challenging issues of average consensus algorithms in wireless sensor networks’, IET Wirel. Sens. Syst., 2016, 6, pp. 6066.
    5. 5)
      • 5. Zhang, C., Ren, J., Gao, C., et al: ‘Sensor fault detection in wireless sensor networks’. Proc. of the IET Int. Communication Conf. on Wireless Mobile and Computing, 2009, pp. 6669.
    6. 6)
      • 6. Zhang, Y., Meratnia, N., Havinga, P.: ‘Outlier detection techniques for wireless sensor networks: a survey’, IEEE Commun. Surv. Tutor., 2010, 12, (2), pp. 159170.
    7. 7)
      • 7. Subramaniam, S., Palpanas, T., Papadopoulos, D., et al: ‘Online outlier detection in sensor data using non-parametric models’. Proc. of the 32nd Int. Conf. on Very Large Data Bases, VLDB Endowment, 2006, pp. 187198.
    8. 8)
      • 8. ABID, A., KACHOURI, A., MAHFOUDHI, A.: ‘Anomaly detection in wsn: critical study with new vision’. Int. Conf. on Automation, Control, Engineering and Computer Science – ACECS, IPCO, 2014.
    9. 9)
      • 9. Ahmed, M., Mahmood, A.N., Hu, J.: ‘A survey of network anomaly detection techniques’, J. Netw. Comput. Appl., 2016, 60, pp. 1931.
    10. 10)
      • 10. Jarvis, R.A., Patrick, E.A.: ‘Clustering using a similarity measure based on shared near neighbors’, IEEE Trans. Comput., 1973, 100, (11), pp. 10251034.
    11. 11)
      • 11. Shamshirband, S., Amini, A., Anuar, N.B., et al: ‘D-ficca: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks’, Measurement, 2014, 55, pp. 212226.
    12. 12)
      • 12. Madden, S.: ‘Intel Berkeley research lab’. 2004.
    13. 13)
      • 13. Shamshirband, S., Patel, A., Anuar, N.B., et al: ‘Cooperative game theoretic approach using fuzzy q-learning for detecting and preventing intrusions in wireless sensor networks’, Eng. Appl. Artif. Intell., 2014, 32, pp. 228241.
    14. 14)
      • 14. Ahmadi, A., Shojafar, M., Hajeforosh, S.F., et al: ‘An efficient routing algorithm to preserve k-coverage in wireless sensor networks’, J. Supercomput., 2014, 68, (2), pp. 599623.
    15. 15)
      • 15. Mostafaei, H., Shojafar, M.: ‘A new meta-heuristic algorithm for maximizing lifetime of wireless sensor networks’, Wirel. Pers. Commun., 2015, 82, (2), pp. 723742.
    16. 16)
      • 16. Hassan, A., Mokhtar, H., Hegazy, O.: ‘A heuristic approach for sensor network outlier detection’, Int. J. Res. Rev. Wirel. Sens. Netw., 2011, 1, (4), pp. 6672.
    17. 17)
      • 17. Zhang, Y., Hamm, N.A., Meratnia, N., et al: ‘Statistics-based outlier detection for wireless sensor networks’, Int. J. Geograph. Inf. Sci., 2012, 26, (8), pp. 13731392.
    18. 18)
      • 18. Ahmadi Livani, M., Alikhany, M., Yadollahzadeh Tabari, M., et al: ‘Outlier detection in wireless sensor networks using distributed principal component analysis’, J. AI Data Mining, 2013, 1, (1), pp. 111.
    19. 19)
      • 19. Chitradevi, N., Palanisamy, V., Baskaran, K., et al: ‘Efficient density based techniques for anomalous data detection in wireless sensor networks’, J. Appl. Sci. Eng., 2013, 16, (2), pp. 211223.
    20. 20)
      • 20. Guo, S., Zhang, H., Zhong, Z., et al: ‘Detecting faulty nodes with data errors for wireless sensor networks’, ACM Trans. Sens. Netw. (TOSN), 2014, 10, (3), p. 40.
    21. 21)
      • 21. Ozkan, H., Ozkan, F., Kozat, S.S.: ‘Online anomaly detection under Markov statistics with controllable type-i error’, IEEE Trans. Signal Process., 2016, 64, (6), pp. 14351445.
    22. 22)
      • 22. Kamal, S., Ramadan, R.A., Fawzy, E.-R.: ‘Smart outlier detection of wireless sensor network’, Facta Univ. Series: Electron. Energ., 2016, 29, (3), pp. 383393.
    23. 23)
      • 23. Duan, L.: ‘Density-based clustering and anomaly detection’. Business Intelligence-Solution for Business Development, 2012, pp. 7996.
    24. 24)
      • 24. Ester, M., Kriegel, H.-P., Sander, J., et al: ‘A density-based algorithm for discovering clusters in large spatial databases with noise’. KDD, 1996, vol. 96, pp. 226231.
    25. 25)
      • 25. Ankerst, M., Breunig, M.M., Kriegel, H.-P., et al: ‘Optics: ordering points to identify the clustering structure’. ACM Sigmod Record, 1999, vol. 28, pp. 4960.
    26. 26)
      • 26. Daszykowski, M., Walczak, B., Massart, D.L.: ‘Looking for natural patterns in analytical data. 2. Tracing local density with optics’, J. Chem. Inf. Comput. Sci., 2002, 42, (3), pp. 500507.
    27. 27)
      • 27. Hinneburg, A., Keim, D.A.: ‘An efficient approach to clustering in large multimedia databases with noise’. KDD, 1998, vol. 98, pp. 5865.
    28. 28)
      • 28. Daszykowski, M., Tran, T.N., Drab, K.: ‘Revised dbscan algorithm to cluster data with dense adjacent clusters’, Chemometr. Intell. Lab. Syst., 2013, 120, pp. 9296.
    29. 29)
      • 29. Bressen, T.: ‘Consensus decision making’. The change handbook: the definitive resource on todays best methods for engaging whole systems, 2007, pp. 212217.
    30. 30)
      • 30. Luo, X.,, Chang, X.: ‘A novel data fusion scheme using grey model and extreme learning machine in wireless sensor networks’, Int. J. Control Autom. Syst., 2015, 13, (3), pp. 539546.
    31. 31)
      • 31. Appice, A., Ciampi, A., Malerba, D.: ‘Summarizing numeric spatial data streams by trend cluster discovery’, Data Min. Knowl. Discov., 2015, 29, (1), pp. 84136.
    32. 32)
      • 32. Efron, B., Tibshirani, R.: ‘Bootstrap methods for standard errors, confidence intervals, other measures of statistical accuracy’, Stat. Sci., 1986, 1, pp. 5475.
    33. 33)
      • 33. Press, W.H., Teukolsky, S.A., Vetterling, W.T., et al: ‘Numerical recipes in C’ (Citeseer, 1996), vol. 2.
    34. 34)
      • 34. Katzgraber, H.G.: ‘Random numbers in scientific computing: an introduction’, in‘International Summer School Modern Computational Science’ (Citeseer, 2010).

Related content

This is a required field
Please enter a valid email address