Cost-effective design and evaluation of wireless sensor networks using topology-planning methods in small-world context

Cost-effective design and evaluation of wireless sensor networks using topology-planning methods in small-world context

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Wireless Sensor Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Low-power consumption and network resiliency are among the vital qualities for having a seamless, quality-oriented wireless communication. Networks with small-world property are known to possess both these favourable qualities. However, wireless networks are not inherently small-world, neither is easy and cost-effective to artificially create networks with this property by using the existing techniques. In other words, the traditional blind rewiring techniques that aimed at enhancing the network with such features, suffer from inefficiency and saturation behaviour. In this study, the authors propose topology-planning methods that efficiently exploit the expensive long-reach transmission facilities to add the small-world property to the network. The authors show that these methods are practical, cost-effective and efficient since they are appropriately tailored based upon the network realities, such as topology and channel fading. The proposed methods are tested for networks with diverse ranges of ‘clustering coefficient’ and ‘diameter’ in order to prove their aptitudes in dealing with real situations. The results illustrate that the incorporation of these techniques altogether decreases the network ‘diameter’ by almost 50% and the ‘average path length’ by 47%. This corresponds to 67% less facilities compared with blind rewiring techniques.


    1. 1)
      • 1. Milgram, S.: ‘The small world problem’, Psychol. Today, 1967, 1, (61), pp. 6267.
    2. 2)
      • 2. Watts, D., Strogatz, S.: ‘Collective dynamics of small-world networks’, Nature, 1998, 393, pp. 440442 (doi: 10.1038/30918).
    3. 3)
      • 3. Newmann, M., Watts, D.: ‘Renormalization group analysis of the small-world network model’, Phys. Lett., 1999, 263, (4–6), pp. 341346 (doi: 10.1016/S0375-9601(99)00757-4).
    4. 4)
      • 4. Kleinberg, J.: ‘The small-world phenomenon: an algorithmic perspective’. Proc. 32nd Annual ACM Symp. on Theory of Computing, May 2000, pp. 163170.
    5. 5)
      • 5. Helmy, A.: ‘Small worlds in wireless networks’, IEEE Commun. Lett., 2003, 7, (10), pp. 490492 (doi: 10.1109/LCOMM.2003.818887).
    6. 6)
      • 6. Chitradurga, R., Helmy, A.: ‘Analysis of wired short cuts in wireless sensor networks’. Proc. IEEE/ACS Int. Conf. on Pervasive Services (ICPS'04), Beirut, Lebanon, July 2004, pp. 167176.
    7. 7)
      • 7. Younis, M., Bangad, M., Akkaya, K.: ‘Base-station repositioning for optimized performance of sensor networks’. Proc. IEEE VTC 2003 – Wireless Ad hoc, Sensor, and Wearable Networks, Orlando, FL, USA, October 2003.
    8. 8)
      • 8. Jain, R., Puri, A., Sengupta, R.: ‘Geographical routing using partial information for wireless ad hoc networks’. Technical Report M99/69, University of California Berkley, 1999.
    9. 9)
      • 9. Dijkstra, E.W.: ‘A note on two problems in connexion with graphs’, Numer. Math., 1959, pp. 269271 (doi: 10.1007/BF01386390).
    10. 10)
      • 10. Erdos, P., Rnyi, A.: ‘On random graphs. i’, Publ. Math, 1959, 6, pp. 290–297.
    11. 11)
      • 11. Erdos, P., Rnyi, A.: ‘The evolution of random graphs’, Publ. Math. Inst. Hung. Acad. Sci., 1960, 5, pp. 1761.
    12. 12)
      • 12. Afifi, N., Chung, K.: ‘Small world wireless mesh networks’. Proc. Int. Conf. on Innovations in InformationTechnology, December 2008, pp. 500504.
    13. 13)
      • 13. Sharma, G., Mazumdar, R.: ‘Hybrid sensor networks: a small world’. Proc. ACM Mob. hoc, May 2005, pp. 366377.
    14. 14)
      • 14. Verma, C.: ‘A realistic small-world model for wireless mesh networks’, IEEE Commun. Lett., 2011, 15, (4), pp. 455457 (doi: 10.1109/LCOMM.2011.020111.100266).
    15. 15)
      • 15. Yen, L., Cheng, Y.: ‘Clustering coefficient of wireless ad hoc networks and the quantity of hidden terminals’, IEEE Communications Letters, 2005, 9, (3), pp. 234236 (doi: 10.1109/LCOMM.2005.03017).
    16. 16)
      • 16. Sharma, G., Mazumdar, R.: ‘A case for hybrid sensor networks’, IEEE/ACM Trans. Netw., 2008, 16, (5), pp. 11211132 (doi: 10.1109/TNET.2007.910666).
    17. 17)
      • 17. Guidoni, D., Mini, R., Loureiro, A.: ‘On the design of resilient heterogeneous wireless sensor networks based on small world concepts computer networks’, Comput. Netw., Spec. Issue Resilient Survivable Netw. (COMNET), 2010, 54, (8), pp. 12661281.
    18. 18)
      • 18. Guidoni, D.L., Mini, R.A., Loureiro, A.F.: ‘Applying the small world concepts in the design of heterogeneous wireless sensor networks’, IEEE Commun. Lett., 2012, 16, (7), pp. 953955 (doi: 10.1109/LCOMM.2012.052112.120417).
    19. 19)
      • 19. Zonouz, A.E., Tadayon, N., Aïssa, S., Xing, L.: ‘Design and evaluation of small-world wireless ad-hoc networks under Rayleigh fading’. IEEE Globecom 2012, Anaheim, CA, USA, December 2012, pp. 670675.
    20. 20)
      • 20. Banerjee, A., Agarwal, R., Gauthier, V., Yeo, C.K., Afifi, H., Bu-SungLee, F.: ‘A self-organization framework for wireless adhoc networks as small worlds’, IEEE Trans. Veh. Tech., 2012, 61, (6), pp. 26592673 (doi: 10.1109/TVT.2012.2197768).
    21. 21)
      • 21. Abedi, A.: ‘Power-efficient-coded architecture for distributed wireless sensing’, IET Wirel. Sens. Syst., 2011, 1, (3), pp. 129136 (doi: 10.1049/iet-wss.2010.0077).
    22. 22)
      • 22. Dahnil, D.P., Singh, Y.P., Ho, C.K.: ‘Topology-controlled adaptive clustering for uniformity and increased lifetime in wireless sensor networks’, IET Wirel. Sens. Syst., 2012, 2, (4), pp. 318327 (doi: 10.1049/iet-wss.2012.0034).
    23. 23)
      • 23. Baddeley, A., Turner, R.: ‘(2005b) spatstat: an r package for analyzing spatial point patterns’, J. Stat. Softw., 2005, 12, (6), pp. 142.
    24. 24)
      • 24. Baddeley, A., Gregori, P., Mahiques, J., Stoica, R., Stoyan, D.: ‘Case studies in spatial point process modeling (Lecture notes in statistics)‘ (Springer, NewYork, 2005, 1st edn.).
    25. 25)
      • 25. Baddeley, A.: ‘Analysing spatial point patterns in r’. CSIRO Workshop Notes, April 2008.
    26. 26)
      • 26. Rappaport, T.: ‘Wireless communications: principles and practice’ (Prentice-Hall, 2002).

Related content

This is a required field
Please enter a valid email address