Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Cost-effective design and evaluation of wireless sensor networks using topology-planning methods in small-world context

Low-power consumption and network resiliency are among the vital qualities for having a seamless, quality-oriented wireless communication. Networks with small-world property are known to possess both these favourable qualities. However, wireless networks are not inherently small-world, neither is easy and cost-effective to artificially create networks with this property by using the existing techniques. In other words, the traditional blind rewiring techniques that aimed at enhancing the network with such features, suffer from inefficiency and saturation behaviour. In this study, the authors propose topology-planning methods that efficiently exploit the expensive long-reach transmission facilities to add the small-world property to the network. The authors show that these methods are practical, cost-effective and efficient since they are appropriately tailored based upon the network realities, such as topology and channel fading. The proposed methods are tested for networks with diverse ranges of ‘clustering coefficient’ and ‘diameter’ in order to prove their aptitudes in dealing with real situations. The results illustrate that the incorporation of these techniques altogether decreases the network ‘diameter’ by almost 50% and the ‘average path length’ by 47%. This corresponds to 67% less facilities compared with blind rewiring techniques.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 8. Jain, R., Puri, A., Sengupta, R.: ‘Geographical routing using partial information for wireless ad hoc networks’. Technical Report M99/69, University of California Berkley, 1999.
    12. 12)
    13. 13)
      • 19. Zonouz, A.E., Tadayon, N., Aïssa, S., Xing, L.: ‘Design and evaluation of small-world wireless ad-hoc networks under Rayleigh fading’. IEEE Globecom 2012, Anaheim, CA, USA, December 2012, pp. 670675.
    14. 14)
      • 26. Rappaport, T.: ‘Wireless communications: principles and practice’ (Prentice-Hall, 2002).
    15. 15)
      • 11. Erdos, P., Rnyi, A.: ‘The evolution of random graphs’, Publ. Math. Inst. Hung. Acad. Sci., 1960, 5, pp. 1761.
    16. 16)
      • 17. Guidoni, D., Mini, R., Loureiro, A.: ‘On the design of resilient heterogeneous wireless sensor networks based on small world concepts computer networks’, Comput. Netw., Spec. Issue Resilient Survivable Netw. (COMNET), 2010, 54, (8), pp. 12661281.
    17. 17)
      • 13. Sharma, G., Mazumdar, R.: ‘Hybrid sensor networks: a small world’. Proc. ACM Mob. hoc, May 2005, pp. 366377.
    18. 18)
      • 21. Abedi, A.: ‘Power-efficient-coded architecture for distributed wireless sensing’, IET Wirel. Sens. Syst., 2011, 1, (3), pp. 129136 (doi: 10.1049/iet-wss.2010.0077).
    19. 19)
      • 4. Kleinberg, J.: ‘The small-world phenomenon: an algorithmic perspective’. Proc. 32nd Annual ACM Symp. on Theory of Computing, May 2000, pp. 163170.
    20. 20)
      • 15. Yen, L., Cheng, Y.: ‘Clustering coefficient of wireless ad hoc networks and the quantity of hidden terminals’, IEEE Communications Letters, 2005, 9, (3), pp. 234236 (doi: 10.1109/LCOMM.2005.03017).
    21. 21)
      • 18. Guidoni, D.L., Mini, R.A., Loureiro, A.F.: ‘Applying the small world concepts in the design of heterogeneous wireless sensor networks’, IEEE Commun. Lett., 2012, 16, (7), pp. 953955 (doi: 10.1109/LCOMM.2012.052112.120417).
    22. 22)
      • 7. Younis, M., Bangad, M., Akkaya, K.: ‘Base-station repositioning for optimized performance of sensor networks’. Proc. IEEE VTC 2003 – Wireless Ad hoc, Sensor, and Wearable Networks, Orlando, FL, USA, October 2003.
    23. 23)
      • 14. Verma, C.: ‘A realistic small-world model for wireless mesh networks’, IEEE Commun. Lett., 2011, 15, (4), pp. 455457 (doi: 10.1109/LCOMM.2011.020111.100266).
    24. 24)
      • 1. Milgram, S.: ‘The small world problem’, Psychol. Today, 1967, 1, (61), pp. 6267.
    25. 25)
      • 8. Jain, R., Puri, A., Sengupta, R.: ‘Geographical routing using partial information for wireless ad hoc networks’. Technical Report M99/69, University of California Berkley, 1999.
    26. 26)
      • 24. Baddeley, A., Gregori, P., Mahiques, J., Stoica, R., Stoyan, D.: ‘Case studies in spatial point process modeling (Lecture notes in statistics)‘ (Springer, NewYork, 2005, 1st edn.).
    27. 27)
      • 10. Erdos, P., Rnyi, A.: ‘On random graphs. i’, Publ. Math, 1959, 6, pp. 290–297.
    28. 28)
      • 2. Watts, D., Strogatz, S.: ‘Collective dynamics of small-world networks’, Nature, 1998, 393, pp. 440442 (doi: 10.1038/30918).
    29. 29)
      • 25. Baddeley, A.: ‘Analysing spatial point patterns in r’. CSIRO Workshop Notes, April 2008.
    30. 30)
      • 6. Chitradurga, R., Helmy, A.: ‘Analysis of wired short cuts in wireless sensor networks’. Proc. IEEE/ACS Int. Conf. on Pervasive Services (ICPS'04), Beirut, Lebanon, July 2004, pp. 167176.
    31. 31)
      • 16. Sharma, G., Mazumdar, R.: ‘A case for hybrid sensor networks’, IEEE/ACM Trans. Netw., 2008, 16, (5), pp. 11211132 (doi: 10.1109/TNET.2007.910666).
    32. 32)
      • 23. Baddeley, A., Turner, R.: ‘(2005b) spatstat: an r package for analyzing spatial point patterns’, J. Stat. Softw., 2005, 12, (6), pp. 142.
    33. 33)
      • 5. Helmy, A.: ‘Small worlds in wireless networks’, IEEE Commun. Lett., 2003, 7, (10), pp. 490492 (doi: 10.1109/LCOMM.2003.818887).
    34. 34)
      • 12. Afifi, N., Chung, K.: ‘Small world wireless mesh networks’. Proc. Int. Conf. on Innovations in InformationTechnology, December 2008, pp. 500504.
    35. 35)
      • 9. Dijkstra, E.W.: ‘A note on two problems in connexion with graphs’, Numer. Math., 1959, pp. 269271 (doi: 10.1007/BF01386390).
    36. 36)
      • 22. Dahnil, D.P., Singh, Y.P., Ho, C.K.: ‘Topology-controlled adaptive clustering for uniformity and increased lifetime in wireless sensor networks’, IET Wirel. Sens. Syst., 2012, 2, (4), pp. 318327 (doi: 10.1049/iet-wss.2012.0034).
    37. 37)
      • 20. Banerjee, A., Agarwal, R., Gauthier, V., Yeo, C.K., Afifi, H., Bu-SungLee, F.: ‘A self-organization framework for wireless adhoc networks as small worlds’, IEEE Trans. Veh. Tech., 2012, 61, (6), pp. 26592673 (doi: 10.1109/TVT.2012.2197768).
    38. 38)
      • 3. Newmann, M., Watts, D.: ‘Renormalization group analysis of the small-world network model’, Phys. Lett., 1999, 263, (4–6), pp. 341346 (doi: 10.1016/S0375-9601(99)00757-4).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2013.0078
Loading

Related content

content/journals/10.1049/iet-wss.2013.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address