access icon free Tic-Tac-Toe-Arch: a self-organising virtual architecture for Underwater Sensor Networks

In this study, the authors propose Tic-Tac-Toe-Arch, an ‘energy-efficient’, ‘self-organising’, and ‘virtual’ network architecture for Underwater Sensor Networks (UWSNs). In UWSNs, underwater currents play a major role for connectivity disruption. The Tic-Tac-Toe-Arch is capable of self-organising the selection of active nodes to maintain the connectivity providing a ‘virtual topology’. Further, this selection is such that the redundant nodes are selected based on node density and passive node mobility in the corresponding underwater layer. Thus, the network energy consumption is less because of different, but low activity ratio, through the layers. Prior works on UWSN architecture, such as Multipath Virtual Sink, 3D Architecture, and EDETA, did not consider the change in topology because of passive node mobility. Moreover, they did not consider the duty-cycle control through topology management, which, in turn consumes high energy. The authors evaluated the performance of Tic-Tac-Toe-Arch through simulations in NS-3. In terms of the topology formation time, the simulation results show that 99.3% performance improvement is achieved in Tic-Tac-Toe-Arch than EDETA.

Inspec keywords: telecommunication network topology; wireless sensor networks; underwater acoustic communication

Other keywords: EDETA; UWSN; duty cycle control; virtual topology; passive node mobility; underwater sensor networks; self-organising virtual architecture; tic-tac-toe-arch; 3D architecture; node density; redundant nodes; NS-3 simulation; topology management; connectivity disruption; topology formation time; multipath virtual sink

Subjects: Acoustic and other telecommunication systems and equipment; Communication network design, planning and routing

References

    1. 1)
      • 2. Heidemann, J., Li, Y., Syed, A., Wills, J., Ye, W.: ‘Research challenges and applications for underwater sensor networking’. Proc. IEEE Wireless Communication and Networking Conf., 2006, pp. 228235.
    2. 2)
      • 7. Pompili, D., Melodia, T.: ‘An architecture for ocean bottom underwater acoustic sensor networks (UWASN)’. Proc. Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Bodrum, Turkey, June 2004.
    3. 3)
      • 3. Cui, J.-H., Kong, J., Gerla, M., Zhou, S.: ‘Challenges: ‘building scalable mobile underwater wireless sensor networks for aquatic applications’, IEEE Netw., 2006, 20, (3), pp. 1218 (doi: 10.1109/MNET.2006.1637927).
    4. 4)
      • 13. Climent, S., Capella, J.V., Meratnia, N., Serrano, J.J.: ‘Underwater sensor networks: a new energy efficient and robust architecture’, Sensors, 2012, 12, pp. 704731 (doi: 10.3390/s120100704).
    5. 5)
      • 12. Seah, W.K.G., Tan, H.-X.: ‘Multipath virtual sink architecture for underwater sensor networks’. Proc. IEEE OCEANS, 2006, pp. 16.
    6. 6)
      • 6. Shin, S., Schulzrinne, H.: ‘Measurement and analysis of the VoIP capacity in IEEE 802.11 WLAN’, IEEE Trans. Mob. Comput., 2009, 8, (9), pp. 12651279 (doi: 10.1109/TMC.2009.49).
    7. 7)
      • 19. Yan, H., Shi, Z.J., Cui, J.-H.: ‘DBR: depth-based routing for underwater sensor networks’. Proc. IFIP-TC6 Networking Conf. on Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet (NETWORKING), 2008, pp. 7286.
    8. 8)
      • 16. NS-3 Simulator, http://www.nsnam.org/ (Accessed: 29 March 2013).
    9. 9)
      • 18. Berkhovskikh, L., Lysanov, Y.: ‘Fundamentals of ocean acoustics’ (Springer, Germany, 1982).
    10. 10)
      • 5. Sanchez, A., Blanc, S., Yuste, P., Serrano, J.J.: ‘A low cost and high efficient acoustic modem for underwater sensor networks’. Proc. IEEE OCEANS, 2011, pp. 110.
    11. 11)
      • 17. Caruso, A., Paparella, F., Vieira, L.F.M., Erol, M., Gerla, M.: ‘The meandering current mobility model and its impact on underwater mobile sensor networks’. Proc. IEEE INFOCOM, 2008, pp. 221225.
    12. 12)
      • 14. Wang, J., Li, D., Zhou, M., Ghosal, D.: ‘Data collection with multiple mobile actors in underwater sensor networks’. Proc. IEEE Workshop on Delay/Disruption-Tolerant Mobile Networks (DTMN), June 2008, pp. 216221.
    13. 13)
      • 4. Kong, J., Cui, J.-H., Wu, D., Gerla, M.: ‘Building underwater ad-hoc networks and sensor networks for large scale real-time aquatic applications’. Proc. IEEE Military Communication Conf. (MILCOM), 2005, pp. 15351541.
    14. 14)
      • 9. Pompili, D., Melodia, T., Akyildiz, I.F.: ‘Three-dimensional and two-dimensional deployment analysis for underwater acoustic sensor networks’, Ad Hoc Netw., 2009, 7, (4), pp. 778790 (doi: 10.1016/j.adhoc.2008.07.010).
    15. 15)
      • 15. Zhou, Z., Peng, Z., Cui, J.-H., Shi, Z., Bagtzoglou, A.C.: ‘Scalable localization with mobility prediction for underwater sensor networks’, IEEE Trans. Mob. Comput., 2011, 10, (3), pp. 335348 (doi: 10.1109/TMC.2010.158).
    16. 16)
      • 8. Pompili, D., Melodia, T., Akyildiz, I.F.: ‘Deployment analysis in underwater acoustic wireless sensor networks’. Proc. ACM WUWNet, September 2006, pp. 4855.
    17. 17)
      • 11. Roy, S., Arabshahi, P., Rouseff, D., Fox, W.L.J.: ‘Wide area ocean networks: architecture and system design considerations’. Proc. ACM WUWNet, 2006, pp. 2532.
    18. 18)
      • 1. Akyildiz, I.F., Pompili, D., Melodia, T.: ‘Underwater acoustic sensor networks: research challenges’, Ad Hoc Netw., 2005, 3, (3), pp. 257279 (doi: 10.1016/j.adhoc.2005.01.004).
    19. 19)
      • 10. Cayirci, E., Tezcan, H., Dogan, Y., Coskun, V.: ‘Wireless sensor networks for underwater surveillance systems’, Ad Hoc Netw., 2006, 4, pp. 431446 (doi: 10.1016/j.adhoc.2004.10.008).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-wss.2012.0139
Loading

Related content

content/journals/10.1049/iet-wss.2012.0139
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading