http://iet.metastore.ingenta.com
1887

Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks

Mixed-integer nonlinear optimisation approach to coarse-graining biochemical networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Quantitative modelling and analysis of biochemical networks is challenging because of the inherent complexities and nonlinearities of the system and the limited availability of parameter values. Even if a mathematical model of the network can be developed, the lack of large-scale good-quality data makes accurate estimation of a large number of parameters impossible. Hence, coarse-grained models (CGMs) consisting of essential biochemical mechanisms are more suitable for computational analysis and for studying important systemic functions. The central question in constructing a CGM is which mechanisms should be deemed ‘essential’ and which can be ignored. Also, how should parameter values be defined when data are sparse? A mixed-integer nonlinear-programming (MINLP) based optimisation approach to coarse-graining is presented. Starting with a detailed biochemical model with associated computational details (reaction network and mathematical description) and data on the biochemical system, the structure and the parameters of a CGM can be determined simultaneously. In this optimisation problem, the authors use a genetic algorithm to simultaneously identify parameter values and remove unimportant reactions. The methodology is exemplified by developing two CGMs for the GTPase-cycle module of M1 muscarinic acetylcholine receptor, Gq, and regulator of G protein signalling 4 [RGS4, a GTPase-activating protein (GAP)] starting from a detailed model of 48 reactions. Both the CGMs have only 17 reactions, fit experimental data well and predict, as does the detailed model, four limiting signalling regimes (LSRs) corresponding to the extremes of receptor and GAP concentration. The authors demonstrate that coarse-graining, in addition to resulting in a reduced-order model, also provides insights into the mechanisms in the network. The best CGM obtained for the GTPase cycle also contains an unconventional mechanism and its predictions explain an old problem in pharmacology, the biphasic (bell-shaped) response to certain drugs. The MINLP methodology is broadly applicable to larger and complex (dense) biochemical modules.

References

    1. 1)
      • U.S. Bhalla , P.T. Ram , R. Iyengar . MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science , 5583 , 1018 - 1023
    2. 2)
      • L.H. Hartwell , J.J. Hopfield , S. Leibler , A.W. Murray . From molecular to modular cell biology. Nature , 6761 , C47 - C52
    3. 3)
      • D.A. Lauffenburger . Cell signaling pathways as control modules: complexity for simplicity?. Proc. Natl. Acad. Sci. USA , 10 , 5031 - 5033
    4. 4)
      • A.R. Asthagiri , D.A. Lauffenburger . Bioengineering models of cell signaling. Annu. Rev. Biomed. Eng. , 31 - 53
    5. 5)
    6. 6)
      • S.R. Neves , R. Iyengar . Modeling of signaling networks. Bioessays , 12 , 1110 - 1117
    7. 7)
    8. 8)
      • M. Green , D.J.N. Limebeer . (1996) Linear robust control.
    9. 9)
      • L. Petzold , W.J. Zhu . Model reduction for chemical kinetics: an optimization approach. AIChE J. , 4 , 869 - 886
    10. 10)
      • A.N. Tikhonov . Systems of differential equations containing a small parameter in the derivatives. Mat. Sbornik , 73 , 575 - 586
    11. 11)
      • G. Stephanopoulos , A. Aristidou , J. Nielsen . (1998) Review of cellular metabolism, Metabolic engineering: principles and methodologies.
    12. 12)
      • N. Vora , P. Daoutidis . Nonlinear model reduction of chemical reaction systems. AIChE J. , 10 , 2320 - 2332
    13. 13)
      • M.S. Okino , M.L. Mavrovouniotis . Simplification of mathematical models of chemical reaction systems. Chem. Rev. , 2 , 391 - 408
    14. 14)
      • A. Kremling , J. Saez-Rodriguez . Systems biology – an engineering perspective. J. Biotechnol. , 2
    15. 15)
      • G. Obinata , B.D.O. Anderson . (2001) Model reduction for control system design.
    16. 16)
      • K. Edwards , T.F. Edgar , V.I. Manousiouthakis . Kinetic model reduction using genetic algorithms. Comput. Chem. Eng. , 239 - 246
    17. 17)
      • I.P. Androulakis . Kinetic mechanism reduction based on an integer programming approach. AIChE J. , 2 , 361 - 371
    18. 18)
      • B. Bhattacharjee , D.A. Schwer , P.I. Barton , W.H. Green . Optimally-reduced kinetic models: reaction elimination in large-scale kinetic mechanisms. Combust. Flame , 3 , 191 - 208
    19. 19)
    20. 20)
      • H. Conzelmann , J. Saez-Rodriguez , T. Sauter , B.N. Kholodenko , E.D. Gilles . A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinf.
    21. 21)
      • M. Koschorreck , H. Conzelmann , S. Ebert , M. Ederer , E.D. Gilles . Reduced modeling of signal transduction – a modular approach. BMC Bioinf. , 1
    22. 22)
      • D.E. Goldberg . (1999) Genetic algorithms in search, optimization and machine learning.
    23. 23)
      • S.J. Bornheimer , M.R. Maurya , M.G. Farquhar , S. Subramaniam . Computational modeling reveals how interplay between components of a GTPase-cycle module regulates signal transduction. Proc. Natl. Acad. Sci. USA , 45 , 15899 - 15904
    24. 24)
      • D.L. Donoho , I.M. Johnstone . Ideal spatial adaptation via wavelet shrinkage. Biometrika , 3 , 425 - 455
    25. 25)
      • M. Tawarmalani , N.V. Sahinidis . Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. , 3 , 563 - 591
    26. 26)
      • S.R. Neves , P.T. Ram , R. Iyengar . G protein pathways. Science , 5573 , 1636 - 1639
    27. 27)
      • A.M. Tolkovsky , A. Levitzki . Mode of coupling between beta-adrenergic-receptor and adenylate-cyclase in turkey erythrocytes. Biochemistry , 18 , 3795 - 3810
    28. 28)
      • S.E. Pedersen , E.M. Ross . Functional reconstitution of beta-adrenergic receptors and the stimulatory GTP-binding protein of adenylate-cyclase. Proc. Natl. Acad. Sci. USA , 23 , 7228 - 7232
    29. 29)
      • A.M. Tolkovsky , A. Levitzki . Coupling of a single Adenylate-Cyclase to 2 receptors – Adenosine and Catecholamine. Biochemistry , 18 , 3811 - 3817
    30. 30)
      • M. Hekman , D. Feder , A.K. Keenan . Reconstitution of beta-adrenergic-receptor with components of adenylate-cyclase. EMBO J. , 13 , 3339 - 3345
    31. 31)
      • E.C. Stites , P.C. Trampont , Z. Ma , K.S. Ravichandran . Network analysis of oncogenic Ras activation in cancer. Science , 5849 , 463 - 467
    32. 32)
      • L.S. Bernstein , S. Ramineni , C. Hague . RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate G(q/11 alpha) signaling. J. Biol. Chem. , 20 , 21248 - 21256
    33. 33)
      • G.H. Biddlecome , G. Berstein , E.M. Ross . Regulation of phospholipase C-beta 1 by G(q) and m1 muscarinic cholinergic receptor – steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J. Biol. Chem. , 14 , 7999 - 8007
    34. 34)
      • A. Benians , M. Nobles , S. Hosny , A. Tinker . Regulators of G-protein signaling form a quaternary complex with the agonist, receptor and G-protein: a novel explanation for the acceleration of signaling activation kinetics. J. Biol. Chem. , 14 , 13383 - 13394
    35. 35)
      • A. Benians , M. Nobles , A. Tinker . Participation of RGS8 in the ternary complex of agonist, receptor and G-protein. Biochem. Soc. Trans. , 1045 - 1047
    36. 36)
      • D.J. McLoughlin , F. Bertelli , C. Williams . The A, B, Cs of G-protein-coupled receptor pharmacology in assay development for HTS. Expert Opin. Drug Discov. , 5 , 603 - 619
    37. 37)
      • K.L. Neitzel , J.R. Hepler . Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling. Semin. Cell Dev. Biol. , 3 , 383 - 389
    38. 38)
      • H.L. Zhong , S.M. Wade , P.J. Woolf , J.J. Linderman , J.R. Traynor , R.R. Neubig . A spatial focusing model for G protein signals – regulator of G protein signaling (RGS) protein-mediated kinetic scaffolding. J. Biol. Chem. , 9 , 7278 - 7284
    39. 39)
      • E.M. Ross , T.M. Wilkie . GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. , 795 - 827
    40. 40)
      • X. Xu , W. Zeng , S. Popov . RGS proteins determine signaling specificity of Gq-coupled receptors. J. Biol. Chem. , 6 , 3549 - 3556
    41. 41)
      • W.Z. Zeng , X. Xu , S. Popov . The N-terminal domain of RGS4 confers receptor-selective inhibition of G protein signaling. J. Biol. Chem. , 52 , 34687 - 34690
    42. 42)
      • A.A. Roy , K.E. Lemberg , P. Chidiac . Recruitment of RGS2 and RGS4 to the plasma membrane by G proteins and receptors reflects functional interactions. Mol. Pharmacol. , 3 , 587 - 593
    43. 43)
      • P. Michal , M. Lysikova , S. Tucek . Dual effects of muscarinic M(2) acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists. Br. J. Pharmacol. , 6 , 1217 - 1228
    44. 44)
      • P. Michal , E.E. El-Fakahany , V. Dolezal . Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J. Pharmacol. Exp. Ther. , 2 , 607 - 614
    45. 45)
      • K.L. Lan , N.A. Sarvazyan , R. Taussig . A point mutation in Galphao and Galphai1 blocks interaction with regulator of G protein signaling proteins. J. Biol. Chem. , 21 , 12794 - 12797
    46. 46)
      • S. Mukhopadhyay , E.M. Ross . Rapid GTP binding and hydrolysis by G(q) promoted by receptor and GTPase-activating proteins. Proc. Natl. Acad. Sci. USA , 17 , 9539 - 9544
    47. 47)
      • G. Berstein , J.L. Blank , D.Y. Jhon , J.H. Exton , S.G. Rhee , E.M. Ross . Phospholipase C-Beta-1 is a GTPase-activating protein for Gq/11, its physiological regulator. Cell , 3 , 411 - 418
    48. 48)
      • G. Krauss . (2001) G-protein coupled signal transduction pathways, Biochemistry of signal transduction and regulation.
    49. 49)
      • M.R. Maurya , S. Subramaniam . Online supporting material to: a kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability. Biophys. J. , 3 , 709 - 728
    50. 50)
      • J.H. Holland . (1998) Emergence: from chaos to order.
    51. 51)
      • D. Wolf , R. Moros . Estimating rate constants of heterogeneous catalytic reactions without supposition of rate determining surface steps – an application of a genetic algorithm. Chem. Eng. Sci. , 7 , 1189 - 1199
    52. 52)
    53. 53)
      • T. Bäck . (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20080098
Loading

Related content

content/journals/10.1049/iet-syb_20080098
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address