http://iet.metastore.ingenta.com
1887

Currency and commodity metabolites: their identification and relation to the modularity of metabolic networks

Currency and commodity metabolites: their identification and relation to the modularity of metabolic networks

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The large-scale shape and function of metabolic networks are intriguing topics of systems biology. Such networks are on one hand commonly regarded as modular (i.e. built by a number of relatively independent subsystems), but on the other hand they are robust in a way not necessarily expected of a purely modular system. To address this question, we carefully discuss the partition of metabolic networks into subnetworks. The practice of preprocessing such networks by removing the most abundant substances, ‘currency metabolites’, is formalized into a network-based algorithm. We study partitions for metabolic networks of many organisms and find cores of currency metabolites and modular peripheries of what we call ‘commodity metabolites’. The networks are found to be more modular than random networks but far from perfectly divisible into modules. We argue that cross-modular edges are the key for the robustness of metabolism.

References

    1. 1)
      • H.A. Krebs . The citric acid cycle. Biochem. J. , 460 - 463
    2. 2)
      • C.K. Matthews , K.E. van Holde , K.G. Ahern . (2000) Biochemistry.
    3. 3)
      • A. Wagner . (2005) Robustness and Evolvability in Living Systems.
    4. 4)
      • B.O. Palsson , E.N. Lightfoot . Mathematical modelling of dynamics and control in metabolic networks. Part IV. Local stability analysis of single biochemical control loops. J. Theor. Biol. , 261 - 277
    5. 5)
      • J. Zhao , H. Yu , J. Luo , Z.W. Cao , Y.-X. Li . Complex networks theory for analyzing metabolic networks. Chinese Sci. Bull. , 1529 - 1537
    6. 6)
      • M. Arita . The metabolic network of Escherichia coli is not small. Proc. Natl. Acad. Sci. , 1543 - 1547
    7. 7)
      • J.D. Han , N. Bertin , T. Hao , D.S. Goldberg , G.F. Berriz . Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature , 88 - 93
    8. 8)
      • R. Guimera , L.A. Nunes Amaral . Functional cartography of complex metabolic networks. Nature , 895 - 900
    9. 9)
      • P. Holme , M. Huss , H. Jeong . Subnetwork hierarchies of biochemical pathways. Bioinformatics , 532 - 538
    10. 10)
      • H.-W. Ma , A.-P. Zeng . Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics , 270 - 277
    11. 11)
      • H.-W. Ma , X.-M. Zhao , Y.-J. Yuan , A.-P. Zeng . Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics , 1870 - 1876
    12. 12)
      • E. Ravasz , A.L. Somera , D.A. Mongru , Z.N. Oltvai , A.L. Barabasi . Hierarchical organization of modularity in metabolic networks. Science , 1551 - 1555
    13. 13)
      • S. Schuster , T. Pfeiffer , E. Moldenhauer , I. Koch , T. Dandekar . Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics , 351 - 361
    14. 14)
      • M. Kanehisa , S. Goto , S. Kawashima , Y. Okuno , M. Hattori . The KEGG resource for deciphering the genome. Nucl. Acids Res. , D277 - D280
    15. 15)
      • A. Wagner , D.A. Fell . The small world inside large metabolic networks. Proc. R. Soc. Lond. B , 1803 - 1810
    16. 16)
      • H. Jeong , B. Tombor , R. Albert , Z.N. Oltvai , A.L. Barabasi . The large-scale organization of metabolic networks. Nature , 651 - 654
    17. 17)
      • S. Schmidt , S. Sunyaev , P. Bork , T. Dandekar . Metabolites: a helping hand for pathway evolution?. Trends Biochem. Sci. , 336 - 341
    18. 18)
      • S. Goto , T. Nishioka , M. Kanehisa . LIGAND: chemical database for enzyme reactions. Bioinformatics , 591 - 599
    19. 19)
      • J. Duch , A. Arenas . Community detection in complex networks using extremal optimization. Phys. Rev. E
    20. 20)
      • R. Guimerà , M. Sales-Pardo , L.A.N. Amaral . Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E
    21. 21)
      • M.E.J. Newman . Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA , 8577 - 8582
    22. 22)
      • J.M. Roberts . Simple methods for simulating sociomatrices with given marginal totals. Soc. Netw. , 273 - 283
    23. 23)
      • R. Tanaka . Scale-rich metabolic networks. Phys. Rev. Lett.
    24. 24)
      • M.A. Savageau . (1976) Biochemical systems analysis: a study of function and design in molecular biology.
    25. 25)
      • H. Kitano . Biological robustness. Nat. Rev. Genet. , 826 - 837
    26. 26)
      • P.M. Gleiss , P.F. Stadler , A. Wagner , D.A. Fell . Relevant cycles in chemical reaction networks. Adv. Complex Syst. , 207 - 226
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20060077
Loading

Related content

content/journals/10.1049/iet-syb_20060077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address