Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Dynamic measure of gene co-regulation

Dynamic measure of gene co-regulation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Systems Biology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Gene expression is to a large extent controlled at the level of mRNA accumulation. Genes whose products function together are likely under a common regulatory system (e.g. signal transduction pathways, sets of regulatory proteins) such that they are expressed in a coordinated manner. This property has been frequently used in the analysis of genome-wide expression data, as the experimental observation that a group of genes is co-expressed frequently implies that the genes share a common regulatory mechanism. The authors have investigated the situation in which dissimilarity in gene‐expression time profiles may still result from the presence of the same regulatory signal, as in the case of common transcription factors. To this aim, a dynamic model that takes into account the effect of specific mRNA degradation on the shape of gene-expression time series has been developed, and the concept of ‘dynamically co-regulated’ genes has accordingly been introduced as the goodness‐of‐fit to such a model (called dynamic R2). The statistical analysis of dynamic R2 over a number of different experimental data sets and organisms shows that the presence of dynamically co-regulated genes is by far more significant than that expected from the randomised data. Furthermore, as an example of the usefulness of the proposed method, genome-wide yeast measurements such as cell-cycle time series and transcription factors targets data, were used to prove that dynamic co-regulation is statistically related to the presence of common transcription factor(s). This latter property is very useful when trying to infer computational indications of co-regulation for not-yet annotated genes that do not display a co-expression pattern.

References

    1. 1)
      • C.J. Wilusz , J. Wilusz . Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. , 491 - 497
    2. 2)
      • O.G. Troyanskaya , K. Dolinski , A.B. Owen , R.B. Altman , D. Botstein . A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc. Natl. Acad. Sci. USA , 8348 - 8353
    3. 3)
      • P. Mitchell , D. Tollervey . mRNA turnover. Curr. Opin. Cell Biol. , 320 - 325
    4. 4)
      • Y. Wang , C.L. Liu , J.D. Storey , R.J. Tibshirani , D. Herschlag , P.O. Brown . Precision and functional specificity in mRNA decay. Proc. Natl Acad. Sci. USA , 5860 - 5865
    5. 5)
      • M. Wickens , D.S. Bernstein , J. Kimble , R. Parker . A PUF family portrait: 3″UTR regulation as a way of life. Trends Genet. , 150 - 157
    6. 6)
      • P. Jorgensen , J.L. Nishikawa , B.J. Breitkreutz , M. Tyers . Systematic identification of pathways that couple cell growth and division in yeast. Science , 395 - 400
    7. 7)
      • M.B. Eisen , P.T. Spellman , P.O. Brown , D. Botstein . Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA , 14863 - 14868
    8. 8)
      • C.T. Harbison , D.B. Gordon , T.I. Lee , N.J. Rinaldi , K.D. Macisaac , T.W. Danford , N.M. Hannett , J.B. Tagne , D.B. Reynolds , J. Yoo , E.G. Jennings , J. Zeitlinger , D.K. Pokholok , M. Kellis , P.A. Rolfe , K.T. Takusagawa , E.S. Lander , D.K. Gifford , E. Fraenkel , R.A. Young . Transcriptional regulatory code of a eukaryotic genome. Nature , 99 - 104
    9. 9)
    10. 10)
    11. 11)
      • L.H.P. Caro , G.J. Smits , P. van Egmond , J.W. Chapman , F.M. Klis . Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differentially regulated during the cell cycle. FEMS Microbiol. Lett. , 345 - 349
    12. 12)
      • R. Parker , H. Song . The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. , 121 - 127
    13. 13)
      • J. Ross . mRNA stability in mammalian cells. Microbiol. Rev. , 423 - 450
    14. 14)
      • V.R. Iyer , M.B. Eisen , D.T. Ross , G. Schuler , T. Moore , J.C.F. Lee , J.M. Trent , L.M. Staudt , J. Hudson , M.S. Boguski , D. Lashkari , D. Shalon , D. Botstein , P.O. Brown . The transcriptional program in the response of human fibroblasts to serum. Science , 83 - 87
    15. 15)
      • M.T. Laub , H.H. McAdams , T. Feldblyum , C.M. Fraser , L. Shapiro . Global analysis of the genetic network controlling a bacterial cell cycle. Science , 2144 - 2148
    16. 16)
      • E. Yang , E. van Nimwegen , M. Zavolan , N. Rajewsky , M. Schroeder , M. Magnasco , J.E. Darnell . Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. , 1863 - 1872
    17. 17)
      • A.P. Gasch , P.T. Spellman , C.M. Kao , O. Carmel-Harel , M.B. Eisen , G. Storz , D. Botstein , P.O. Brown . Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell , 4241 - 4257
    18. 18)
      • B. Futcher . Cell cycle synchronization. Meth. Cell Sci. , 79 - 86
    19. 19)
      • P. Smolen , D.A. Baxter , J.H. Byrne . Modeling transcriptional control in gene networks: methods, recent results, and future directions. Bull. Math. Biol. , 247 - 292
    20. 20)
      • A.P. Gerber , D. Herschlag , P.O. Brown . Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLS Biol. , 3 , 342 - 354
    21. 21)
      • E. Segal , M. Shapira , A. Regev , D. Pe'er , D. Botstein , D. Koller , N. Friedman . Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genet. , 166 - 176
    22. 22)
      • O. Wolkenhauer , M. Mesarovic . Feedback dynamics and cell function: why systems biology is called systems biology. Mol. Biosystems , 14 - 16
    23. 23)
      • K. Keeling , J. Salas-Marco , L. Osherovich , J. Weissman , D. Bedwell . Characterization of a novel regulator of translation termination and poly(A) length in yeast .
    24. 24)
      • P.T. Spellman , G. Sherlock , M.Q. Zhang , V.R. Iyer , K. Anders , M.B. Eisen , P.O. Brown , D. Botstein , B. Futcher . Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell , 3273 - 3297
    25. 25)
      • S. Tavazoie , J.D. Hughes , M.J. Campbell , R.J. Cho , G.M. Church . Systematic determination of genetic network architecture. Nature Genet , 281 - 285
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb_20060031
Loading

Related content

content/journals/10.1049/iet-syb_20060031
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address