access icon free Identification and analysis of circRNA–miRNA–mRNA regulatory network in hepatocellular carcinoma

This study was to identify important circRNA–miRNA–mRNA (ceRNAs) regulatory mechanisms in hepatocellular carcinoma (HCC). The circRNA dataset GSE97332 and miRNA dataset GSE57555 were used for analyses. Functional enrichment analysis for miRNA and target gene was conducted using cluster Profiler. Survival analysis was conducted through R package Survival. The ceRNAs and drug–gene interaction networks were constructed. The ceRNAs network contained five miRNAs including hsa-miR-25-3p, hsa-miR-3692-5p, hsa-miR-4270, hsa-miR-331-3p, and hsa-miR-125a-3p. Among the network, hsa-miR-25-3p targeted the most genes, hsa-miR-3692-5p and hsa-miR-4270 were targeted by more circRNAs than other miRNAs, hsa-circ-0034326 and hsa-circ-0011950 interacted with three miRNAs. Furthermore, target genes, including NRAS, ITGA5, SLC7A1, SEC14L2, SLC12A5, and SMAD2 were obtained in drug–gene interaction network. Survival analysis showed NRAS, ITGA5, SLC7A1, SEC14L2, SLC12A5, and SMAD2 were significantly associated with prognosis of HCC. NRAS, ITGA5, and SMAD2 were significantly enriched in proteoglycans in cancer. Moreover, hsa-circ-0034326 and hsa-circ-0011950 might function as ceRNAs to play key roles in HCC. Furthermore, miR-25-3p, miR-3692-5p, and miR-4270 might be significant for HCC development. NRAS, ITGA5, SEC14L2, SLC12A5, and SMAD2 might be prognostic factors for HCC patients via proteoglycans in cancer pathway. Taken together, the findings will provide novel insight into pathogenesis, selection of therapeutic targets and prognostic factors for HCC.

Inspec keywords: RNA; patient diagnosis; genetics; biochemistry; molecular biophysics; cellular biophysics; bioinformatics; drugs; cancer; tumours

Other keywords: miRNAs; ITGA5; target gene; SMAD2; therapeutic targets; hsa-circ-0034326; survival analysis; hsa-circ-0011950; SLC7A1; SLC12A5; drug–gene interaction network; prognostic factors; pathogenesis; current 125.0 A; hsa-miR-3692-5p; hsa-miR-25-3p; hsa-miR-4270; hsa-miR-331-3p; hsa-miR-125a-3p; circRNA-miRNA-mRNA regulatory network; SEC14L2

Subjects: Probability theory, stochastic processes, and statistics; Physical chemistry of biomolecular solutions and condensed states; Biomolecular interactions, charge transfer complexes; Biology and medical computing; Biomolecular structure, configuration, conformation, and active sites; Physics of subcellular structures; Patient diagnostic methods and instrumentation; Macromolecular configuration (bonds, dimensions)

References

    1. 1)
      • 22. Wagner, A.H., Coffman, A.C., Ainscough, B.J., et al: ‘DGIdb 2.0: mining clinically relevant drug–gene interactions’, Nucleic Acids Res., 2016, 44, (D1), pp. D1036D1044.
    2. 2)
      • 23. Zhong, Y., Du, Y., Yang, X., et al: ‘Circular RNAs function as ceRNAs to regulate and control human cancer progression’, Mol. Cancer, 2018, 17, (1), p. 79.
    3. 3)
      • 11. Fu, L., Wu, S., Yao, T., et al: ‘Decreased expression of hsa_circ_0003570 in hepatocellular carcinoma and its clinical significance’, J. Clin. Lab. Anal., 2017, 32, (2), p. e22239.
    4. 4)
      • 30. Wu, D., Tang, R., Qi, Q., et al: ‘Five functional polymorphisms of B7/CD28 co-signaling molecules alter susceptibility to colorectal cancer’, Cell. Immunol., 2015, 293, (1), pp. 4148.
    5. 5)
      • 36. Wong, A.W., Paulson, Q.X., Hong, J., et al: ‘Alcohol promotes breast cancer cell invasion by regulating the Nm23-ITGA5 pathway’, J. Exp. Clin. Cancer Res., 2011, 30, (1), p. 75.
    6. 6)
      • 13. Qi, X., Zhang, D., Wu, N., et al: ‘ceRNA in cancer: possible functions and clinical implications’, J. Med. Genet., 2015, 52, (10), pp. 710718.
    7. 7)
      • 42. Iozzo, R.V., Sanderson, R.D.: ‘Proteoglycans in cancer biology, tumour microenvironment and angiogenesis’, J. Cell. Mol. Med., 2011, 15, (5), pp. 10131031.
    8. 8)
      • 24. Su, Z., Zhao, J., Rong, Z., et al: ‘Upregulation of microRNA-25 associates with prognosis in hepatocellular carcinoma’, Diagn. Pathol., 2014, 9, p. 47.
    9. 9)
      • 20. Dweep, H., Gretz, N.: ‘miRWalk2.0: a comprehensive atlas of microRNA-target interactions’, Nat. Methods, 2015, 12, (8), p. 697.
    10. 10)
      • 12. Yu, J., Xu, Q., Wang, Z., et al: ‘Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma’, J. Hepatol., 2018, 68, (6), pp. 12141227.
    11. 11)
      • 10. Kristensen, L.S., Hansen, T.B., Venø, M.T., et al: ‘Circular RNAs in cancer: opportunities and challenges in the field’, Oncogene, 2018, 37, (5), pp. 555565.
    12. 12)
      • 34. Chen, J., Ji, T., Wu, D., et al: ‘Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma’, Cell Death Dis., 2019, 10, (6), p. 425.
    13. 13)
      • 6. Elhendawy, M., Abdul-Baki, E., Abd-Elsalam, S., et al: ‘MicroRNA signature in hepatocellular carcinoma patients: identification of potential markers’, Mol. Biol. Rep., 2020, 47, (7), pp. 49454953.
    14. 14)
      • 18. Ritchie, M.E., Phipson, B., Wu, D., et al: ‘Limma powers differential expression analyses for RNA-sequencing and microarray studies’, Nucleic Acids Res., 2015, 43, (7), p. e47.
    15. 15)
      • 38. Sun, R., Luo, Y., Li, J., et al: ‘Ammonium chloride inhibits autophagy of hepatocellular carcinoma cells through SMAD2 signaling’, Tumor Biol., 2015, 36, (2), pp. 11731177.
    16. 16)
      • 3. Shaaban, S., Negm, A., Ibrahim, E.E., et al: ‘Chemotherapeutic agents for the treatment of hepatocellular carcinoma: efficacy and mode of action’, Oncol. Rev., 2014, 8, (1), p. 246.
    17. 17)
      • 29. Wang, Y., Li, C.F., Sun, L.B., et al: ‘microRNA-4270-5p inhibits cancer cell proliferation and metastasis in hepatocellular carcinoma by targeting SATB2’, Hum. Cell, 2020, 33, (4), pp. 11551164.
    18. 18)
      • 17. Barrett, T., Suzek, T.O., Troup, D.B., et al: ‘NCBI GEO: mining millions of expression profiles – database and tools’, Nucleic Acids Res., 2005, 33, pp. D562D566.
    19. 19)
      • 14. Guan, Z., Tan, J., Gao, W., et al: ‘Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway’, J. Cell. Physiol., 2018, 234, (1), pp. 500508.
    20. 20)
      • 39. Wang, X., Ni, J., Hsu, C.L., et al: ‘Reduced expression of tocopherol-associated protein (TAP/Sec14L2) in human breast cancer’, Cancer Invest., 2009, 27, (10), pp. 971977.
    21. 21)
      • 2. Mikulits, W.: ‘Epithelial to mesenchymal transition in hepatocellular carcinoma’, Future Oncol., 2018, 5, (8), p. 1169.
    22. 22)
      • 31. Gao, M., Liu, D.: ‘CRISPR/cas9-based pten knock-out and sleeping beauty transposon-mediated Nras knock-in induces hepatocellular carcinoma and hepatic lipid A’, Cancer Biol. Ther., 2017, 18, (7), pp. 505512.
    23. 23)
      • 25. Tian, C., Yao, S., Dong, X., et al: ‘MicroRNA-25 promotes growth and migration of liver cancer cells by regulating Klf4 gene expression’, Tumor, 2016, 36, (5), pp. 512520.
    24. 24)
      • 8. Danan, M., Schwartz, S., Edelheit, S., et al: ‘Transcriptome-wide discovery of circular RNAs in archaea’, Nucleic Acids Res., 2012, 40, (7), pp. 31313142.
    25. 25)
      • 40. Yu, C., Yu, J., Yao, X., et al: ‘Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing’, Cell Res., 2014, 24, (6), pp. 701712.
    26. 26)
      • 26. Song, J., Li, Y.: ‘Mir-25-3p reverses epithelial-mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells’, Cancer Sci., 2017, 108, (1), pp. 2331.
    27. 27)
      • 19. Enright, A.J., Bino, J., Ulrike, G., et al: ‘MicroRNA targets in Drosophila’, Genome Biol., 2003, 5, (1), p. R1.
    28. 28)
      • 7. Chen, X., Xie, D., Zhao, Q., et al: ‘MicroRNAs and complex diseases: from experimental results to computational models’, Brief. Bioinform., 2019, 20, (2), pp. 515539.
    29. 29)
      • 32. Schirripa, M., Cremolini, C., Loupakis, F., et al: ‘Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer’, Int. J. Cancer, 2015, 136, (1), pp. 8390.
    30. 30)
      • 37. Fu, H., He, Y., Qi, L., et al: ‘cPLA2α activates PI3K/AKT and inhibits Smad2/3 during epithelial–mesenchymal transition of hepatocellular carcinoma cells’, Cancer Lett., 2017, 403, pp. 260270.
    31. 31)
      • 27. Chen, H., Pan, H., Qian, Y., et al: ‘Mir-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2’, Mol. Cancer, 2018, 17, (1), p. 4.
    32. 32)
      • 33. Shimada, Y., Taniguchi, H., Honma, Y., et al: ‘Clinicopathological features and prognostic roles of KRAS, BRAF, PIK3CA and NRAS mutations in advanced gastric cancer’, BMC Res. Notes, 2014, 7, (1), p. 271.
    33. 33)
      • 21. Yu, G., Wang, L., Han, Y., et al: ‘Clusterprofiler: an R package for comparing biological themes among gene clusters’, OMICS, 2012, 16, (5), pp. 284287.
    34. 34)
      • 1. Li, Y.W., Yang, F.C., Lu, H.Q., et al: ‘Hepatocellular carcinoma and hepatitis B surface protein’, World J. Gastroenterol., 2016, 22, (6), pp. 19431952.
    35. 35)
      • 35. Cimino, D., De Pitta, C., Orso, F., et al: ‘Mir148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1’, FASEB J., 2013, 27, (3), pp. 12231235.
    36. 36)
      • 15. Jiang, W., Wen, D., Gong, L., et al: ‘Circular RNA hsa_circ_0000673 promotes hepatocellular carcinoma malignance by decreasing miR-767-3p targeting SET’, Biochem. Biophys. Res. Commun., 2018, 500, (2), pp. 211216.
    37. 37)
      • 14. Guan, Z., Tan, J., Gao, W., et al: ‘Circular RNA hsa_circ_0016788 regulates hepatocellular carcinoma tumorigenesis through miR-486/CDK4 pathway’, J. Cell. Physiol., 2018, 234, (1), pp. 500508.
    38. 38)
      • 2. Mikulits, W.: ‘Epithelial to mesenchymal transition in hepatocellular carcinoma’, Future Oncol., 2018, 5, (8), p. 1169.
    39. 39)
      • 11. Fu, L., Wu, S., Yao, T., et al: ‘Decreased expression of hsa_circ_0003570 in hepatocellular carcinoma and its clinical significance’, J. Clin. Lab. Anal., 2017, 32, (2), p. e22239.
    40. 40)
      • 21. Yu, G., Wang, L., Han, Y., et al: ‘Clusterprofiler: an R package for comparing biological themes among gene clusters’, OMICS, 2012, 16, (5), pp. 284287.
    41. 41)
      • 8. Danan, M., Schwartz, S., Edelheit, S., et al: ‘Transcriptome-wide discovery of circular RNAs in archaea’, Nucleic Acids Res., 2012, 40, (7), pp. 31313142.
    42. 42)
      • 41. Xu, L., Li, X., Zhang, X., et al: ‘679 identification and characterization of a novel amplification gene Slc12a5 in colorectal cancer’, Gastroenterology, 2013, 144, (5), p. S-124.
    43. 43)
      • 7. Chen, X., Xie, D., Zhao, Q., et al: ‘MicroRNAs and complex diseases: from experimental results to computational models’, Brief. Bioinform., 2019, 20, (2), pp. 515539.
    44. 44)
      • 40. Yu, C., Yu, J., Yao, X., et al: ‘Discovery of biclonal origin and a novel oncogene SLC12A5 in colon cancer by single-cell sequencing’, Cell Res., 2014, 24, (6), pp. 701712.
    45. 45)
      • 27. Chen, H., Pan, H., Qian, Y., et al: ‘Mir-25-3p promotes the proliferation of triple negative breast cancer by targeting BTG2’, Mol. Cancer, 2018, 17, (1), p. 4.
    46. 46)
      • 24. Su, Z., Zhao, J., Rong, Z., et al: ‘Upregulation of microRNA-25 associates with prognosis in hepatocellular carcinoma’, Diagn. Pathol., 2014, 9, p. 47.
    47. 47)
      • 9. Wang, Y., Mo, Y., Gong, Z., et al: ‘Circular RNAs in human cancer’, Mol. Cancer, 2017, 16, (1), p. 25.
    48. 48)
      • 22. Wagner, A.H., Coffman, A.C., Ainscough, B.J., et al: ‘DGIdb 2.0: mining clinically relevant drug–gene interactions’, Nucleic Acids Res., 2016, 44, (D1), pp. D1036D1044.
    49. 49)
      • 6. Elhendawy, M., Abdul-Baki, E., Abd-Elsalam, S., et al: ‘MicroRNA signature in hepatocellular carcinoma patients: identification of potential markers’, Mol. Biol. Rep., 2020, 47, (7), pp. 49454953.
    50. 50)
      • 13. Qi, X., Zhang, D., Wu, N., et al: ‘ceRNA in cancer: possible functions and clinical implications’, J. Med. Genet., 2015, 52, (10), pp. 710718.
    51. 51)
      • 16. Fu, L., Chen, Q., Yao, T., et al: ‘Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma’, Oncotarget, 2018, 8, (27), pp. 4387843888.
    52. 52)
      • 41. Xu, L., Li, X., Zhang, X., et al: ‘679 identification and characterization of a novel amplification gene Slc12a5 in colorectal cancer’, Gastroenterology, 2013, 144, (5), p. S-124.
    53. 53)
      • 43. Nault, J., Guyot, E., Laguillier, C., et al: ‘Serum proteoglycans as prognostic biomarkers of hepatocellular carcinoma in patients with alcoholic cirrhosis’, Cancer Epidemiol. Biomarkers Prev., 2013, 22, (8), pp. 13431352.
    54. 54)
      • 9. Wang, Y., Mo, Y., Gong, Z., et al: ‘Circular RNAs in human cancer’, Mol. Cancer, 2017, 16, (1), p. 25.
    55. 55)
      • 28. Zhang, H., Jia, F., Wang, T.: ‘Effect of miR-25-3p on invasion and migration of human lung cancer A549 cells by regulating expression of cytoplasmic polyadenylation element binding protein 4’, Chinese J. Biolog., 2017, 30, (10), pp. 10331037.
    56. 56)
      • 44. Jia, X., Li, S., Dang, S., et al: ‘Increased expression of chondroitin sulphate proteoglycans in rat hepatocellular carcinoma tissues’, World J. Gastroenterol., 2012, 18, (30), pp. 39623976.
    57. 57)
      • 5. Miller, K.D., Nogueira, L., Mariotto, A.B., et al: ‘Cancer treatment and survivorship statistics, 2019’, CA Cancer J. Clin., 2019, 69, (5), pp. 363385.
    58. 58)
      • 19. Enright, A.J., Bino, J., Ulrike, G., et al: ‘MicroRNA targets in Drosophila’, Genome Biol., 2003, 5, (1), p. R1.
    59. 59)
      • 43. Nault, J., Guyot, E., Laguillier, C., et al: ‘Serum proteoglycans as prognostic biomarkers of hepatocellular carcinoma in patients with alcoholic cirrhosis’, Cancer Epidemiol. Biomarkers Prev., 2013, 22, (8), pp. 13431352.
    60. 60)
      • 44. Jia, X., Li, S., Dang, S., et al: ‘Increased expression of chondroitin sulphate proteoglycans in rat hepatocellular carcinoma tissues’, World J. Gastroenterol., 2012, 18, (30), pp. 39623976.
    61. 61)
      • 15. Jiang, W., Wen, D., Gong, L., et al: ‘Circular RNA hsa_circ_0000673 promotes hepatocellular carcinoma malignance by decreasing miR-767-3p targeting SET’, Biochem. Biophys. Res. Commun., 2018, 500, (2), pp. 211216.
    62. 62)
      • 12. Yu, J., Xu, Q., Wang, Z., et al: ‘Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma’, J. Hepatol., 2018, 68, (6), pp. 12141227.
    63. 63)
      • 23. Zhong, Y., Du, Y., Yang, X., et al: ‘Circular RNAs function as ceRNAs to regulate and control human cancer progression’, Mol. Cancer, 2018, 17, (1), p. 79.
    64. 64)
      • 34. Chen, J., Ji, T., Wu, D., et al: ‘Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma’, Cell Death Dis., 2019, 10, (6), p. 425.
    65. 65)
      • 39. Wang, X., Ni, J., Hsu, C.L., et al: ‘Reduced expression of tocopherol-associated protein (TAP/Sec14L2) in human breast cancer’, Cancer Invest., 2009, 27, (10), pp. 971977.
    66. 66)
      • 18. Ritchie, M.E., Phipson, B., Wu, D., et al: ‘Limma powers differential expression analyses for RNA-sequencing and microarray studies’, Nucleic Acids Res., 2015, 43, (7), p. e47.
    67. 67)
      • 3. Shaaban, S., Negm, A., Ibrahim, E.E., et al: ‘Chemotherapeutic agents for the treatment of hepatocellular carcinoma: efficacy and mode of action’, Oncol. Rev., 2014, 8, (1), p. 246.
    68. 68)
      • 33. Shimada, Y., Taniguchi, H., Honma, Y., et al: ‘Clinicopathological features and prognostic roles of KRAS, BRAF, PIK3CA and NRAS mutations in advanced gastric cancer’, BMC Res. Notes, 2014, 7, (1), p. 271.
    69. 69)
      • 29. Wang, Y., Li, C.F., Sun, L.B., et al: ‘microRNA-4270-5p inhibits cancer cell proliferation and metastasis in hepatocellular carcinoma by targeting SATB2’, Hum. Cell, 2020, 33, (4), pp. 11551164.
    70. 70)
      • 16. Fu, L., Chen, Q., Yao, T., et al: ‘Hsa_circ_0005986 inhibits carcinogenesis by acting as a miR-129-5p sponge and is used as a novel biomarker for hepatocellular carcinoma’, Oncotarget, 2018, 8, (27), pp. 4387843888.
    71. 71)
      • 28. Zhang, H., Jia, F., Wang, T.: ‘Effect of miR-25-3p on invasion and migration of human lung cancer A549 cells by regulating expression of cytoplasmic polyadenylation element binding protein 4’, Chinese J. Biolog., 2017, 30, (10), pp. 10331037.
    72. 72)
      • 32. Schirripa, M., Cremolini, C., Loupakis, F., et al: ‘Role of NRAS mutations as prognostic and predictive markers in metastatic colorectal cancer’, Int. J. Cancer, 2015, 136, (1), pp. 8390.
    73. 73)
      • 42. Iozzo, R.V., Sanderson, R.D.: ‘Proteoglycans in cancer biology, tumour microenvironment and angiogenesis’, J. Cell. Mol. Med., 2011, 15, (5), pp. 10131031.
    74. 74)
      • 36. Wong, A.W., Paulson, Q.X., Hong, J., et al: ‘Alcohol promotes breast cancer cell invasion by regulating the Nm23-ITGA5 pathway’, J. Exp. Clin. Cancer Res., 2011, 30, (1), p. 75.
    75. 75)
      • 30. Wu, D., Tang, R., Qi, Q., et al: ‘Five functional polymorphisms of B7/CD28 co-signaling molecules alter susceptibility to colorectal cancer’, Cell. Immunol., 2015, 293, (1), pp. 4148.
    76. 76)
      • 38. Sun, R., Luo, Y., Li, J., et al: ‘Ammonium chloride inhibits autophagy of hepatocellular carcinoma cells through SMAD2 signaling’, Tumor Biol., 2015, 36, (2), pp. 11731177.
    77. 77)
      • 10. Kristensen, L.S., Hansen, T.B., Venø, M.T., et al: ‘Circular RNAs in cancer: opportunities and challenges in the field’, Oncogene, 2018, 37, (5), pp. 555565.
    78. 78)
      • 37. Fu, H., He, Y., Qi, L., et al: ‘cPLA2α activates PI3K/AKT and inhibits Smad2/3 during epithelial–mesenchymal transition of hepatocellular carcinoma cells’, Cancer Lett., 2017, 403, pp. 260270.
    79. 79)
      • 25. Tian, C., Yao, S., Dong, X., et al: ‘MicroRNA-25 promotes growth and migration of liver cancer cells by regulating Klf4 gene expression’, Tumor, 2016, 36, (5), pp. 512520.
    80. 80)
      • 20. Dweep, H., Gretz, N.: ‘miRWalk2.0: a comprehensive atlas of microRNA-target interactions’, Nat. Methods, 2015, 12, (8), p. 697.
    81. 81)
      • 17. Barrett, T., Suzek, T.O., Troup, D.B., et al: ‘NCBI GEO: mining millions of expression profiles – database and tools’, Nucleic Acids Res., 2005, 33, pp. D562D566.
    82. 82)
      • 26. Song, J., Li, Y.: ‘Mir-25-3p reverses epithelial-mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells’, Cancer Sci., 2017, 108, (1), pp. 2331.
    83. 83)
      • 31. Gao, M., Liu, D.: ‘CRISPR/cas9-based pten knock-out and sleeping beauty transposon-mediated Nras knock-in induces hepatocellular carcinoma and hepatic lipid A’, Cancer Biol. Ther., 2017, 18, (7), pp. 505512.
    84. 84)
      • 4. Sun, V.C., Sarna, L.: ‘Symptom management in hepatocellular carcinoma’, Clin. J. Oncol. Nurs., 2008, 12, (5), pp. 759766.
    85. 85)
      • 1. Li, Y.W., Yang, F.C., Lu, H.Q., et al: ‘Hepatocellular carcinoma and hepatitis B surface protein’, World J. Gastroenterol., 2016, 22, (6), pp. 19431952.
    86. 86)
      • 35. Cimino, D., De Pitta, C., Orso, F., et al: ‘Mir148b is a major coordinator of breast cancer progression in a relapse-associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1’, FASEB J., 2013, 27, (3), pp. 12231235.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-syb.2020.0061
Loading

Related content

content/journals/10.1049/iet-syb.2020.0061
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading